Simulink® Coder™
Reference

[
i R
V/
N
y.

MATLAB&SIMULINK?

R2017b -) MathWorks:

X o)

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ Reference
© COPYRIGHT 2011-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only

New for Version 8.0 (Release 2011a)
Revised for Version 8.1 (Release 2011b)
Revised for Version 8.2 (Release 2012a)
Revised for Version 8.3 (Release 2012b)
Revised for Version 8.4 (Release 2013a)
Revised for Version 8.5 (Release 2013b)
Revised for Version 8.6 (Release 2014a)
Revised for Version 8.7 (Release 2014b)
Revised for Version 8.8 (Release 2015a)
Revised for Version 8.9 (Release 2015b)
Rereleased for Version 8.8.1 (Release
2015aSP1)

Revised for Version 8.10 (Release 2016a)
Revised for Version 8.11 (Release 2016b)
Revised for Version 8.12 (Release 2017a)
Revised for Version 8.13 (Release 2017b)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

Contents

Simulink Code Generation Limitations

1]

Simulink Code Generation Limitations 1-2

Alphabetical List

2|

Blocks — Alphabetical List

3

Code Generation Parameters: Code Generation

4|

Model Configuration Parameters: Code Generation 4-2
Code Generation: General Tab Overview 4-5
Togethelponanoption 4-5
Systemtargetfile, 4-6
Description e 4-6
SettINgS . . . e 4-6
TIPS et 4-6
Command-Line Information 4-6
Recommended Settings 4-7

vii

viii

Contents

Browse
Description e
TIPS ot e

Language
Description e
Settingsot
Dependencies e
Command-Line Information
Recommended Settings

Description e
Description

Toolchain
Description e
Settings i e
TP o e
Command-Line Information
Recommended Settings

Build configuration
Description
Settingso v e
D e
Dependencies
Command-Line Information
Recommended Settings

Tool/lOptions e
Description
Settings . . oo it
Dependencies
Command-Line Information

Compiler optimizationlevel
Description
Settingst e
TIPS ot e
Dependencies
Command-Line Information
Recommended Settings

Custom compiler optimizationflags

Description

Settings
Dependency
Command-Line Information

Recommended Settings

Generate makefile
Description

Settings

Dependencies

Command-Line Information

Recommended Settings

Make command
Description

Settings

Tip oo

Dependency
Command-Line Information

Recommended Settings

Template makefile
Description

Settings
Tips i
Dependency
Command-Line Information

Recommended Settings

Select objective / Prioritized objectives

Description

Settings

Tip ..o

Dependency
Command-Line Information

Recommended Settings

Prioritized objectives
Description
Dependencies

Command-Line Information

4-21
4-21
4-21
4-21
4-21
4-21

4-23
4-23
4-23
4-23
4-23
4-24

4-25
4-25
4-25
4-25
4-26
4-26
4-26

4-27
4-27
4-27
4-27
4-27
4-28
4-28

4-29
4-29
4-29
4-29
4-29
4-30
4-30

4-31
4-31
4-31
4-31

ix

X

Contents

Set Objectives
Description e
Dependency

Set Objectives — Code Generation Advisor Dialog Box
Description
Settings . . .ot e
Dependency
Command-Line Information

CheckModel
Description
Settings ..ot
Dependency

Check model before generatingcode
Description e
Settings i
Command-Line Information
Recommended Settings

Generatecodeonly
Description
Settings . . oot e
D oo
Command-Line Information
Recommended Settings

Package code and artifacts
Description e
Settings . . oot e
Dependency
Command-Line Information
Recommended Settings

Zipfilename
Description
Settings . ..ot
Dependency
Command-Line Information
Recommended Settings

Code Generation Parameters: Report

5

Model Configuration Parameters: Code Generation

Report e 5-2
Code Generation: Report Tab Overview 5-4
Configuration 5-4
Create code generationreport 5-5
Description e 5-5
Settingsot 5-5
Dependency 5-6
Command-Line Information 5-7
Recommended Settings 5-7
Open report automatically 5-8
Description e 5-8
Settings . . oot e 5-8
Dependency e 5-8
Command-Line Information 5-8
Recommended Settings 5-8
Generate model Webview 5-10
Description 5-10
SEttINgS . . . 5-10
Dependencies 5-10
Command-Line Information 5-10
Recommended Settings 5-11
Staticcodemetrics 5-12
Description 5-12
Settingso i 5-12
Dependencies 5-12
Command-Line Information 5-12
Recommended Settings 5-12

xi

xii

Contents

Code Generation Parameters: Comments

6

Model Configuration Parameters: Code Generation

Comments i, 6-2
Code Generation: Comments Tab Overview 6-4
Include comments 6-5

Description e 6-5
SettIngsot 6-5
Dependencies 6-5
Command-Line Information 6-5
Recommended Settings 6-6
Simulink block comments 6-7
Description e 6-7
SettingS . . oot e 6-7
Dependency e 6-7
Command-Line Information 6-7
Recommended Settings 6-7
Stateflow object comments 6-9
Description e 6-9
SEttINgS . . . e 6-9
Dependency e 6-9
Command-Line Information 6-9
Recommended Settings 6-10
MATLAB source code ascomments 6-11
Description 6-11
Settingso i i e 6-11
Dependency 6-11
Command-Line Information 6-11
Recommended Settings 6-12
Show eliminated blocks 6-13
Description 6-13
SettINgS . .ot e 6-13
Dependency 6-13
Command-Line Information 6-13
Recommended Settings 6-13

Verbose comments for SimulinkGlobal storage class 6-15

Description 6-15
Settings . ..o i e 6-15
Dependency 6-16
Command-Line Information 6-16
Recommended Settings 6-16
Operator annotations 6-17
Description 6-17
Settings . .o oot e 6-17
TIPS e e 6-17
Dependency 6-17
Command-Line Information 6-18
Recommended Settings 6-18
Simulink block descriptions 6-19
Description 6-19
Settings ..ot e 6-19
Dependency 6-19
Command-Line Information 6-19
Recommended Settings 6-20
Simulink data object descriptions 6-21
Description 6-21
Settingso v e 6-21
Dependency 6-21
Command-Line Information 6-21
Recommended Settings 6-22
Custom comments (MPT objectsonly) 6-23
Description 6-23
Settings . . oo i e 6-23
Dependency 6-23
Command-Line Information 6-23
Recommended Settings 6-24
Custom comments function 6-25
Description e 6-25
Settings ..ot e 6-25
I .ot 6-25
Dependency 6-25
Command-Line Information 6-25
Recommended Settings 6-26

xiii

xiv

Contents

Stateflow object descriptions 6-27

Description 6-27
Settings . . oot e 6-27
Dependency 6-27
Command-Line Information 6-27
Recommended Settings 6-28
Requirements in block comments 6-29
Description e 6-29
Settings . . oot e 6-29
Dependency 6-29
TIPS e e 6-30
Command-Line Information 6-30
Recommended Settings 6-30
MATLAB usercomments0.ouuu.... 6-31
Description 6-31
Settings ..o .ot e 6-31
Dependency 6-31
Command-Line Information 6-31
Recommended Settings 6-31

Code Generation Parameters: Symbols

7]

Model Configuration Parameters: Code Generation

Symbols 7-2
Code Generation: Symbols Tab Overview 7-5
Global variables 7-6

Description e 7-6
Settings . . oot e 7-6
TIPS e 7-6
Dependency e 7-7
Command-Line Information 7-7
Recommended Settings 7-8
Global types e 7-9
Description e 7-9

Settings i e
TIPS e e

Dependency

Command-Line Information
Recommended Settings

Field name of global types

Description

Settings . . .
Tips

Dependency

Command-Line Information
Recommended Settings

Subsystemmethods

Description

Settings . ..
Tips

Dependency

Command-Line Information
Recommended Settings

Subsystem method arguments

Description

Settings . ..
Tips

Dependencies
Command-Line Information
Recommended Settings

Local temporary variables

Description

Settings . . .
Tips

Dependency

Command-Line Information
Recommended Settings

Local block output variables

Description

Settings . ..
Tips

Dependency

XV

xvi

Contents

Command-Line Information
Recommended Settings

Constant MacCros i

Description

Settings . . .
Tips

Dependency

Command-Line Information
Recommended Settings

Shared utilities
Description

Settings . ..
Tips

Dependency

Command-Line Information
Recommended Settings

Minimum manglelength

Description

Settings . ..
Tips

Dependency

Command-Line Information
Recommended Settings

Maximum identifierlength

Description

Settings . . .
Tips

Command-Line Information
Recommended Settings

System-generated identifiers

Description

Settings . . .

Dependencies
Command-Line Information
Recommended Settings

Generate scalar inlined parametersas

Description

7-24
7-24

7-25
7-25
7-25
7-25
7-26
7-26
7-27

7-28
7-28
7-28
7-28
7-29
7-29
7-29

7-31
7-31
7-31
7-31
7-31
7-31
7-32

7-33
7-33
7-33
7-33
7-33
7-34

7-35
7-35
7-35
7-38
7-38
7-39

7-40
7-40

Settings

Dependencies

Command-Line Information

Recommended Settings

Improve Code Readability by Generating Block Parameter

Values as Macros

Signal naming

Description e

Settings

Dependencies

Limitation
Command-Line Information

Recommended Settings

M-function
Description

Settings

Tip oo
Dependencies

Command-Line Information

Recommended Settings

Parameter naming

Description

Settings

Dependencies

Command-Line Information

Recommended Settings

M-function
Description

Settings

Tip ..o
Dependencies

Command-Line Information

Recommended Settings

#define naming

Description e

Settings

Dependencies

Command-Line Information

7-40
7-40
7-40
7-40

7-41

7-43
7-43
7-43
7-43
7-44
7-44
7-44

7-45
7-45
7-45
7-46
7-46
7-46
7-46

7-47
7-47
7-47
7-47
7-48
7-48

7-49
7-49
7-49
7-50
7-50
7-50
7-50

7-51
7-51
7-51
7-51
7-52

xvil

xviii

Contents

Recommended Settings 7-52

M-function 7-53
Description 7-53
Settings . . o oot e 7-53
I .o 7-54
Dependencies e 7-54
Command-Line Information 7-54
Recommended Settings 7-54

Use the same reserved names as Simulation Target 7-55
Description 7-55
Settings ..ot 7-55
Command-Line Information 7-55
Recommended Settings 7-55

Reservednames 7-57
Description 7-57
Settings i e 7-57
TIPS .« e e 7-57
Command-Line Information 7-57
Recommended Settings 7-58

Code Generation Parameters: Custom Code

8

Model Configuration Parameters: Code Generation Custom

Code e 8-2
Code Generation: Custom Code Tab Overview 8-4
Configuration 8-4

Use the same custom code settings as Simulation Target . . . 8-5

Description e 8-5
SEttINgS . . . e e 8-5
Command-Line Information 8-5
Recommended Settings 8-5
Source file e 8-7
Description e 8-7

SettIngs . ..ot 8-7

Command-Line Information 8-7
Recommended Settings 8-7
Headerfile 8-8
Description e 8-8
Settingsot 8-8
Command-Line Information 8-8
Recommended Settings 8-8
Initialize function 8-10
Description 8-10
Settings ..ot e 8-10
Command-Line Information 8-10
Recommended Settings 8-10
Terminate function 8-11
Description 8-11
Settings i e 8-11
Dependency 8-11
Command-Line Information 8-11
Recommended Settings 8-11
Include directories 8-13
Description 8-13
Settingsot e 8-13
Command-Line Information 8-13
Recommended Settings 8-14
Sourcefiles e 8-15
Description 8-15
Settings . . .o v i e 8-15
Limitation 8-15
D e 8-15
Command-Line Information 8-15
Recommended Settings 8-15
Libraries e 8-17
Description 8-17
Settingsot e 8-17
Limitation 8-17
I .ot 8-17
Command-Line Information 8-17

xix

XX

Contents

Recommended Settings 8-17

Defines e 8-19
Description e 8-19
Settingsot e 8-19
Command-Line Information 8-19
Recommended Settings 8-19

Code Generation Parameters: Interface

9

Model Configuration Parameters: Code Generation

Interface 9-2
Code Generation: Interface Tab Overview 9-10
Code replacement library 9-11

Description 9-11
Settings i 9-11
TIPS .« e e 9-12
TED o o oo e e e 9-13
Command-Line Information 9-13
Recommended Settings 9-13
Shared code placement 9-15
Description 9-15
Settingso i e 9-15
Command-Line Information 9-15
Recommended Settings 9-16
Support: floating-point numbers 9-17
Description e 9-17
Settings . . .ot e 9-17
Dependencies e 9-17
Command-Line Information 9-17
Recommended Settings 9-18
Support: non-finite numbers 9-19
Description 9-19
Settingst 9-19

Dependencies
Command-Line Information
Recommended Settings

Support: complex numbers
Description

Settings

Dependencies e
Command-Line Information
Recommended Settings

Support: absolute time
Description

Settings

Dependencies
Command-Line Information
Recommended Settings

Support: continuoustime
Description

Settings

Dependencies
Command-Line Information
Recommended Settings

Support: variable-size signals
Description

Settings

Dependencies e
Command-Line Information
Recommended Settings

Code interface packaging
Description e

Settings

Tips . ..

Dependencies
Command-Line Information
Recommended Settings

Multi-instance code error diagnostic
Description

Settings

9-19
9-20
9-20

9-21
9-21
9-21
9-21
9-21
9-22

9-23
9-23
9-23
9-23
9-23
9-24

9-25
9-25
9-25
9-25
9-26
9-26

9-28
9-28
9-28
9-28
9-28
9-28

9-30
9-30
9-30
9-31
9-31
9-32
9-32

9-34

9-34
9-34

xx1

Dependencies 9-34

Command-Line Information 9-34
Recommended Settings 9-35
Passroot-level /O as 9-36
Description 9-36
Settings . . .o i e 9-36
Dependencies 9-36
Command-Line Information 9-36
Recommended Settings 9-37

Remove error status field in real-time model data

structure 9-38
Description 9-38
Settings ..ot 9-38
Dependencies 9-38
Command-Line Information 9-38
Recommended Settings 9-39

Configure Model Functions 9-40
Description e 9-40
Dependencies 9-40

Parameter visibility, 9-41
Description 9-41
Settings . . oot e 9-41
Dependencies 9-41
Command-Line Information 9-41
Recommended Settings 9-42

Parameteraccess 9-43
Description 9-43
Settings . . .o v i e 9-43
Dependencies e 9-43
Command-Line Information 9-43
Recommended Settings 9-44

Externall/Oaccess iiiiiiinn.. 9-45
Description 9-45
Settingst e 9-45
Dependencies 9-46
Command-Line Information 9-46
Recommended Settings 9-46

xxii Contents

Configure C++ Class Interface 9-47

Description 9-47
Dependencies 9-47
Generate C API for:signals 9-48
Description e 9-48
Settings . . .o i e 9-48
Command-Line Information 9-48
Recommended Settings 9-48
Generate C API for: parameters 9-50
Description 9-50
Settings ..ot e 9-50
Command-Line Information 9-50
Recommended Settings 9-50
Generate CAPIfor:states 9-52
Description 9-52
Settings i 9-52
Command-Line Information 9-52
Recommended Settings 9-52
Generate C API for: root-level /O 9-54
Description e 9-54
Settingso v e 9-54
Command-Line Information 9-54
Recommended Settings 9-54
ASAP2 interface 9-56
Description e 9-56
Settings . . o oot e 9-56
Command-Line Information 9-56
Recommended Settings 9-56
Externalmode 9-58
Description 9-58
Settings ..ot 9-58
Command-Line Information 9-58
Recommended Settings 9-58
Transportlayer 9-60
Description 9-60
Settings v e 9-60

xx1ii

Xx1iv

Contents

4
Dependency
Command-Line Information
Recommended Settings

MEX-file arguments
Description e
Settings . . .o i e
Dependency
Command-Line Information
Recommended Settings

Static memory allocation
Description
Settings .. oot e
D e
Dependencies e
Command-Line Information
Recommended Settings

Static memory buffersize
Description
Settingso
TIPS .« e
Dependency
Command-Line Information
Recommended Settings

LUT object struct order for even spacing specification
Description
Settings . . .ot e
Command-Line Information
Recommended Settings

LUT object struct order for explicit value specification . ..
Description e
SEttINgS . . . e
Command-Line Information
Recommended Settings

Simulink Coder Parameters: Advanced Parameters

10

Ignore custom storageclasses 10-2
Description e 10-2
SEttINgS . . . 10-2
TIPS ot 10-2
Dependencies 10-2
Command-Line Information 10-2
Recommended Settings 10-3

Ignore test pointsignals 10-4
Description 10-4
Settings i 10-4
Dependencies 10-4
Command-Line Information 10-4
Recommended Settings 10-5

Code-to-model 10-6
Description 10-6
Settingso i e 10-6
Dependencies 10-6
Command-Line Information 10-6
Recommended Settings 10-7

Model-to-code 10-8
Description e 10-8
Settings . . oo i e 10-8
Dependencies e 10-8
Command-Line Information 10-9
Recommended Settings 10-9

Configure 10-10
Description e 10-10
Dependency 10-10

Eliminated / virtualblocks 10-11
Description 10-11
Settings it e 10-11
Dependencies 10-11
Command-Line Information 10-11
Recommended Settings 10-11

XXV

xxvi

Contents

Traceable Simulink blocks
Description
Settings . ..ot
Dependencies i
Command-Line Information
Recommended Settings

Traceable Stateflow objects
Description e
Settings . . o oot e
Dependencies
Command-Line Information
Recommended Settings

Traceable MATLAB functions
Description e
Settingst e
Dependencies
Command-Line Information
Recommended Settings

Summarize which blocks triggered code replacements . . .
Description
Settings i e
Dependencies
Command-Line Information
Recommended Settings

Standard math library
Description e
Settings . . oot e
TIPS e
Dependencies
Command-Line Information
Recommended Settings

Support non-inlined S-functions
Description e
Settingst e
D e e
Dependencies
Command-Line Information
Recommended Settings

Multiword type definitions
Description
Settingso i e

Tips

Dependencies
Command-Line Information
Recommended Settings

Maximum word length
Description e
Settings . . ot ot e

Tips

Dependencies
Command-Line Information
Recommended Settings

Classic call interface
Description e
Settings i i e

Tips

Dependencies
Command-Line Information
Recommended Settings

Use dynamic memory allocation for model initialization .
Description
Settings v e
Dependencies
Command-Line Information
Recommended Settings

Use dynamic memory allocation for model block
instantiation
Description e
Settings . . .ot e
Dependencies
Command-Line Information
Recommended Settings

Single output/update function
Description e
Settings ..ot e

Tips

10-25
10-25
10-25
10-25
10-26
10-26
10-26

10-28
10-28
10-28
10-28
10-29
10-29
10-29

10-30
10-30
10-30
10-30
10-30
10-31
10-31

10-32
10-32
10-32
10-32
10-32
10-32

10-34
10-34
10-34
10-35
10-35
10-35

10-36
10-36
10-36
10-36

xxvii

xxviii

Contents

Dependencies
Command-Line Information
Recommended Settings

Terminate function required
Description e

Settings

Dependencies
Command-Line Information
Recommended Settings

Combine signal/state structures
Description e

Settings

Tips . ..

Dependencies
Command-Line Information
Recommended Settings

Internal data visibility
Description

Settings

Dependencies
Command-Line Information
Recommended Settings

Internaldataaccess
Description e

Settings

Dependencies
Command-Line Information
Recommended Settings

Generate destructor
Description e

Settings

Dependencies
Command-Line Information
Recommended Settings

MAT-file logging
Description e

Settings

10-37
10-38
10-38

10-39
10-39
10-39
10-39
10-39
10-39

10-41
10-41
10-41
10-41
10-42
10-42
10-43

10-44
10-44
10-44
10-44
10-44
10-45

10-46
10-46
10-46
10-46
10-46
10-47

10-48
10-48
10-48
10-48
10-48
10-48

10-50
10-50
10-50

Dependencies

Limitations

Command-Line Information

Recommended Settings

MAT-file variable name modifier

Description
Settings
Dependency

Command-Line Information

Recommended Settings

Verbose build

Description

Settings

Command-Line Information

Recommended Settings

Retain .rtw file

Description

Settings

Command-Line Information

Recommended Settings

Profile TLC

Description

Settings

Command-Line Information

Recommended Settings

Start TLC debugger when generating code

Description

Settings
Tips

Command-Line Information

Recommended Settings

Start TLC coverage when generatingcode

Description

Settings

Tip ..o

Command-Line Information

Recommended Settings

10-51
10-51
10-52
10-52

10-53
10-53
10-53
10-53
10-53
10-53

10-55
10-55
10-55
10-55
10-55

10-57
10-57
10-57
10-57
10-57

10-59
10-59
10-59
10-59
10-59

10-61
10-61
10-61
10-61
10-61
10-61

10-63
10-63
10-63
10-63
10-63
10-63

XXix

XXX

Contents

Enable TLC assertion

Description . .

Settings

Command-Line Information
Recommended Settings

Custom FFT library callback

Description . .

Settings

Limitation
Tip

Command-Line Information
Recommended Settings

Custom LAPACK library callback

Description . .

Settings

Limitation
Tip

Command-Line Information
Recommended Settings

Shared checksumlength

Description . .

Settings

Tip

Dependencies

Command-Line Information
Recommended Settings

EMX array utility functions identifier format

Description . .

Settings
Tips
Dependencies

Command-Line Information
Recommended Settings

EMX array types identifier format

Description . .

Settings
Tips
Dependencies

10-65
10-65
10-65
10-65
10-65

10-67
10-67
10-67
10-67
10-67
10-67
10-68

10-69
10-69
10-69
10-69
10-69
10-69
10-70

10-71
10-71
10-71
10-71
10-71
10-71
10-71

10-73
10-73
10-73
10-74
10-74
10-74
10-74

10-76
10-76
10-76
10-77
10-77

Command-Line Information 10-77

Recommended Settings 10-77
Use Simulink Coder Features 10-79
Description e 10-79
Settings . . oot 10-79
Dependencies 10-79
Command-Line Information 10-79
Commentstyle 10-81
Description e 10-81
Settings ..o it e 10-81
Dependencies 10-82
Command-Line Information 10-82
Recommended Settings 10-82

Configuration Parameters for Simulink Models

11]

Code Generation Pane: RSim Target 11-2
Code Generation: RSim Target Tab Overview 11-2
Enable RSim executable to load parameters from a MAT-

fille .. e 11-3
Solver selection, 11-3
Force storage classesto AUTO 114

Code Generation Pane: S-Function Target 11-6
Code Generation S-Function Target Tab Overview 11-6
Createnewmodel 11-6
Use value for tunable parameters 11-7
Include custom sourcecode 11-8

Code Generation Pane: Tornado Target 11-9
Code Generation: Tornado Target Tab Overview 11-10
Standard math library 11-10
Code replacement library 11-12
Shared code placement 11-13
MAT-filelogging 11-14
MAT-file variable name modifier 11-15
Code Format 11-16

6.0.41

xxx1i

Contents

StethoScope
Download to VxWorks target

Base task priority
Task stacksize

Externalmode

Transportlayer
MEX-file arguments

Static memory allocation

Static memory buffer size

Code Generation: Coder Target Pane

Code Generation: Coder Target Pane Overview (previously

“IDE Link Tab Overview”)

Coder Target: Tool Chain Automation Tab Overview

Buildformat

Buildaction

Overrun notification

Functionname

Configuration

Compiler options string
Linker options string

System stack size MAUs)

Profile real-time execution
Profileby
Number of profiling samples to collect . . .
Maximum time allowed to build project (s)

Maximum time allowed to complete IDE operation (s)

Export IDE link handle to base workspace

IDE link handle name
Source file replacement

Hardware Implementation Pane

Code Generation Pane

Scheduler options
BuildOptions
Clocking

I12C0andI2C1
Timer/PWM
UARTO, UART1, and UART2

PIL ...

Hardware Implementation Pane

Hardware Implementation Pane Overview

11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25

11-27

11-28
11-29
11-30
11-31
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-42
11-43
11-44
11-45
11-46
11-47
11-48

11-50
11-50
11-51
11-51
11-52
11-53
11-54
11-55
11-57
11-58

11-60
11-60

Buildoptions 11-62

Clocking e 11-63
DAC .. e 11-64
UARTO, UART1, UART2, and UART3 11-65
Ethernet 11-67
Externalmode 11-70
Hardware Implementation Pane 11-71
Hardware Implementation Pane Overview 11-71
Hardwareboard 11-72
Baseratetask priority 11-73
ClocKINgot e 11-74
Buildoptions 11-75
Externalmode 11-76
Hardware Implementation Pane 11-78
Hardware Implementation Pane Overview 11-78
Buildoptions e 11-79
ClocKIng i e 11-80
12C . e 11-81
PIL .. e 11-82
SPI . e 11-83
Externalmode 11-84

Recommended Settings Summary for Model Configuration
Parameters e 11-85

Model Advisor Checks

12

Simulink Coder Checks 12-2
Simulink Coder Checks Overview 12-2
Identify blocks using one-based indexing 12-2
Check solver for code generation 12-3
Check for blocks not supported by code generation 12-4
Check and update model to use toolchain approach to build

generatedcode 12-5
Check and update embedded target model to use ert.tlc system
targetfile 12-8

xxx1iii

XXX1V

Check and update models that are using targets that have
changed significantly across different releases of
MATLAB . ..

Check for blocks that have constraints on tunable
parameters

Check for model reference configuration mismatch

Check sample times and taskingmode

Check for code generation identifier formats used for model
reference

Available Checks for Code Generation Objectives

Identify questionable blocks within the specified system . . .

Check model configuration settings against code generation
0DJECLIVES . . vt

Code Generation Advisor Checks

Available Checks for Code Generation Objectives
Identify questionable blocks within the specified system . . .
Check model configuration settings against code generation

0DJECLIVES . . vt e

12-10
12-12
12-12

12-13
12-14
12-23
12-24
12-26
12-26
12-35

12-36

Parameters for Creating Protected Models

13,

Create Protected Model

Create Protected Model: Overview
Open read-only view of model
Simulate e
Use generatedcode,

Codeinterface i

Contenttype e
Create protected modelin

Create harness model for protected model

Tools — Alphabetical List

14

Contents

Simulink Code Generation Limitations

1 Simulink Code Generation Limitations

Simulink Code Generation Limitations

The following topics identify Simulink code generation limitations:

+ “C++ Language Support Limitations”

+ “packNGo Function Limitations”

* “Tunable Expression Limitations”

+ “Generate Reentrant Code from Subsystems”

+ “Simulink Coder Model Referencing Limitations”

+ “External Mode Limitations”

* “Noninlined S-Function Parameter Type Limitations”
* “S-Function Target Limitations”

+ “Rapid Simulation Target Limitations”

+ “Asynchronous Support Limitations”

+ “C API Limitations”

+ “Blocks and Products Supported for C Code Generation”

1-2

Alphabetical List

2 Alphabetical List

addCompileFlags

Add compiler options to model build information

Syntax

addCompileFlags (buildinfo, options, groups)

Description

addCompileFlags (buildinfo, options, groups) specifies the compiler options to
add to the build information.

The function requires the buildinfo and options arguments. You can use an optional
groups argument to group your options.

The code generator stores the compiler options in a build information object. The function
adds options to the object based on the order in which you specify them.

Examples

Add Compiler Flags to OPTS Group

Add the compiler option —03 to the build information myModelBuildInfo and place the
option in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags (myModelBuildInfo, '-03"', 'OPTS");

Add Compiler Flags to OPT_OPTS Group

Add the compiler options -Z1i and -Wall to the build information myModelBuildInfo
and place the options in the group OPT OPTS.

addCompileFlags

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags (myModelBuildInfo, '-7Zi -Wall', 'OPT OPTS'");

Add Compiler Flags to Build Information

For a non-makefile build environment, add the compiler options -Zi, -Wall, and -03 to
the build information myModel1BuildInfo. Place the options -Zi and -Wall in the
group Debug and the option -03 in the group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags (myModelBuildInfo, {'-2i -Wall' '-03'},
{'Debug' 'MemOpt'});

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

options — List of compiler options to add to build information
character vector | array of character vectors

You can specify the options argument as a character vector or as an array of character
vectors. You can specify the options argument as multiple compiler flags within a
single character vector, for example '-2i -Wall'. If you specify the options argument
as multiple character vectors, for example, '-Zi -Wall' and '-03"', the options
argument is added to the build information as an array of character vectors.

Example: {'-zi -Wall' '-03'}

groups — Optional group name for the added compiler options
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'Debug' 'MemOpt', the function
relates the groups to the options in order of appearance. For example, the options
argument {'-Zi -Wall' '-03'} is an array of character vectors with two elements.
The first element is in the 'Debug' group and the second element is in the 'MemOpt"
group.

2 Alphabetical List

Example: { 'Debug' 'MemOpt'}

See Also

addDefines | addLinkFlags | getCompileFlags

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-4

addDefines

addDefines

Add preprocessor macro definitions to model build information

Syntax

addDefines (buildinfo,macrodefs, groups)

Description

addDefines (buildinfo,macrodefs, groups) specifies the preprocessor macro
definitions to add to the build information.

The function requires the buildinfo and macrodefs arguments. You can use an
optional groups argument to group your options.

The code generator stores the definitions in a build information object. The function adds
definitions to the object based on the order in which you specify them.

Examples

Add Macro Definitions to OPTS Group

Add the macro definition ~-DPRODUCTION to the build information myModelBuildInfo
and place the definition in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo, '-DPRODUCTION', "OPTS") ;

Add Macro Definitions to OPT_OPTS Group

Add the macro definitions ~-DPROTO and -DDEBUG to the build information
myModelBuildInfo and place the definitions in the group OPT OPTS.

2 Alphabetical List

2-6

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo,
'-DPROTO —DDEBUG','OPT_OPTS');

Add Macro Definitions to Build Information

For a non-makefile build environment, add the macro definitions ~-DPROTO, —DDEBUG,
and -DPRODUCTION to the build information myMode1BuildInfo. Place the definitions -
DPROTO and -DDEBUG in the group Debug and the definition ~-DPRODUCTION in the group
Release.

myModelBuildInfo = RTW.BuildInfo;

addDefines (myModelBuildInfo,
{'-DPROTO -DDEBUG' '-DPRODUCTION'},
{'Debug' 'Release'});

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

macrodefs — List of macro definitions to add to build information
character vector | array of character vectors

You can specify the macrodefs argument as a character vector or as an array of
character vectors. You can specify the macrodefs argument as multiple definitions
within a single character vector, for example '-DRT -DDEBUG'. If you specify the
macrodefs argument as multiple character vectors, for example' -DPROTO -DDEBUG'
and '-DPRODUCTION', the macrodefs argument is added to the build information as an
array of character vectors.

Example: { '-DPROTO -DDEBUG' '-DPRODUCTION'}

groups — Optional group name for the added compiler options
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example 'Debug' 'Release’, the function
relates the groups to the macrodefs in order of appearance. For example, the

addDefines

macrodefs argument {'-DPROTO -DDEBUG' '-DPRODUCTION'} is an array of
character vectors with two elements. The first element is in the 'Debug' group and the
second element is in the 'Release' group.

Example: { 'Debug' 'Release'}

See Also

addCompileFlags | addLinkFlags | getDefines

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2 Alphabetical List

addincludeFiles

Add include files to model build information

Syntax

addIncludeFiles (buildinfo, filenames,paths, groups)

Description

addIncludeFiles (buildinfo, filenames, paths, groups) specifies included files
and paths to add to the build information.

The function requires the buildinfo and filenames arguments. You can use an
optional paths argument to specify the included file paths and use an optional groups
argument to group your options.

The code generator stores the included file and path options in a build information object.
The function adds options to the object based on the order in which you specify them.

Examples

Add Included File to SysFiles Group

Add the include file mytypes.h to the build information myModelBuildInfo and place
the file in the group SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles (myModelBuildInfo,
'mytypes.h','/proj/src','SysFiles');

addIncludeFiles

Add Included Files to AppFiles Group

Add the include files etc.h and etc_private.h to the build information
myModelBuildInfo, and place the files in the group AppFiles.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles (myModelBuildInfo,
{'etc.h' 'etc private.h'},
'/proj/src', 'AppFiles');

Add Included Files to SysFiles and AppFiles Groups

Add the include files etc.h, etc_private.h, and mytypes.h to the build information
myModelBuildInfo. Group the files etc.h and etc _private.h with the character
vector AppFiles and the file mytypes.h with the character vector SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles (myModelBuildInfo,
{'etc.h' 'etc private.h' 'mytypes.h'},
'/proj/src',
{'AppFiles' 'AppFiles' 'SysFiles'});

Add Included Files with Wildcard to HFiles Group

Add the include files (. h files identified with a wildcard character) in a specified folder to
the build information myMode1BuildInfo, and place the files in the group HFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles (myModelBuildInfo,
'*.h', '/proj/src', 'HFiles');

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

filenames — List of included files to add to build information
character vector | array of character vectors

2 Alphabetical List

2-10

You can specify the filenames argument as a character vector or as an array of
character vectors. If you specify the £ilenames argument as multiple character vectors,
for example, 'etc.h' 'etc private.h', the filenames argument is added to the
build information as an array of character vectors.

If the dot delimiter (.) is present, the file name text can include wildcard characters.
Examplesare "*.*', '* h' and '*.h*",

The function removes duplicate included file entries with an exact match of a path and
file name to a previously defined entry in the build information object.

Example: '*.h'

paths — List of included file paths to add to build information
character vector | array of character vectors

You can specify the paths argument as a character vector or as an array of character
vectors. If you specify a single path as a character vector, the function uses that path for
all files. If you specify the paths argument as multiple character vectors, for example, '/
proj/src' and '/proj/inc', the paths argument is added to the build information as
an array of character vectors.

Example: ' /proj/src’

groups — Optional group name for the added included files
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'AppFiles' 'AppFiles'
'SysFiles', the function relates the groups to the filenames in order of appearance.
For example, the filenames argument 'etc.h' 'etc private.h' 'mytypes.h'is
an array of character vectors with three elements. The first element is in the
'AppFiles' group, the second element is in the 'AppFiles' group, and the third
element is in the 'SysFiles' group.

Example: 'AppFiles' 'AppFiles' 'SysFiles'

See Also

addIncludePaths | addSourceFiles | addSourcePaths | findIncludeFiles |
getIncludeFiles | updateFilePathsAndExtensions | updateFileSeparator

addIncludeFiles

Topics

“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-11

2 Alphabetical List

2-12

addIncludePaths

Add include paths to model build information

Syntax

addIncludePaths (buildinfo, paths, groups)

Description

addIncludePaths (buildinfo, paths, groups) specifies included file paths to add to
the build information.

The function requires the buildinfo and paths arguments. You can use an optional
groups argument to group your options.

The code generator stores the included file path options in a build information object. The
function adds options to the object based on the order in which you specify them.

The code generator does not check whether a specified path is valid.

Examples

Add Include File Path to Build Information

Add the include path /etcproj/etc/etc _build to the build information
myModelBuildInfo

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths (myModelBuildInfo, ...
'/etcproj/etc/etc _build');

addIncludePaths

Add Include File Paths to a Group

Add the include paths /etcproj/etclib and /etcproj/etc/etc build to the build
information myModelBuildInfo and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths (myModelBuildInfo, ...
{'/etcproj/etclib' '/etcproj/etc/etc build'}, 'etc');

Add Include File Paths to Groups

Add the include paths /etcproj/etclib, /etcproj/etc/etc _build, and /
common/1ib to the build information myModelBuildInfo. Group the paths /etc/
proj/etclib and /etcproj/etc/etc build with the character vector etc and the
path /common/1ib with the character vector shared.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths (myModelBuildInfo, ...
{'/etc/proj/etclib' '/etcproj/etc/etc build'...
'/common/lib'}, {'etc' 'etc' 'shared'}):;

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

paths — List of included file paths to add to build information
character vector | array of character vectors

You can specify the paths argument as a character vector or as an array of character
vectors. If you specify a single path as a character vector, the function uses that path for
all files. If you specify the paths argument as multiple character vectors, for example, '/
proj/src' and '/proj/inc', the paths argument is added to the build information as
an array of character vectors.

The function removes duplicate include file path entries with an exact match of a path
and file name to a previously defined entry in the build information object.

Example: ' /proj/src’

2-13

2 Alphabetical List

2-14

groups — Optional group name for the added included files
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'etc' 'etc' 'shared', the
function relates the groups to the paths in order of appearance. For example, the
paths argument ' /etc/proj/etclib' '/etcproj/etc/etc build' '/common/
1lib' is an array of character vectors with three elements. The first element is in the
'etc' group, the second element is in the 'etc' group, and the third element is in the
'shared' group.

Example: 'etc' 'etc' 'shared'

See Also

addIncludeFiles | addSourceFiles | addSourcePaths | getIncludePaths |
updateFilePathsAndExtensions | updateFileSeparator

Topics

“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

addLinkFlags

addLinkFlags

Add link options to model build information

Syntax

addLinkFlags (buildinfo, options, groups)

Description

addLinkFlags (buildinfo, options, groups) specifies the linker options to add to
the build information.

The function requires the buildinfo and options arguments. You can use an optional
groups argument to group your options.

The code generator stores the linker options in a build information object. The function
adds options to the object based on the order in which you specify them.

Examples

Add Linker Flags to OPTS Group

Add the linker -T option to the build information myModelBuildInfo and place the
option in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags (myModelBuildInfo, '-T', 'OPTS") ;

Add Linker Flags to OPT_OPTS Group

Add the linker options -MD and -Gy to the build information myModelBuildInfo and
place the options in the group OPT OPTS.

2-15

2 Alphabetical List

2-16

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags (myModelBuildInfo, '-MD -Gy', 'OPT OPTS'");

Add Linker Flags to Build Information

For a non-makefile build environment, add the linker options -MD, -Gy, and -T to the
build information myModelBuildInfo. Place the options -MD and-Gy in the group
Debug and the option -T in the groupTemp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags (myModelBuildInfo, {'-MD -Gy' '-T'},
{'Debug' 'Temp'});

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

options — List of linker options to add to build information
character vector | array of character vectors

You can specify the options argument as a character vector or as an array of character
vectors. You can specify the options argument as multiple compiler flags within a
single character vector, for example '-MD -Gy'. If you specify the options argument as
multiple character vectors, for example, '-MD -Gy' and '-T', the options argument is
added to the build information as an array of character vectors.

Example: {'-MD -Gy' '-T'}

groups — Optional group name for the added linker options
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'Debug' 'Temp', the function
relates the groups to the options in order of appearance. For example, the options
argument {'-MD -Gy' '-T'} is an array of character vectors with two elements. The
first element is in the 'Debug' group and the second element is in the Temp' group.

Example: { 'Debug' 'Temp'}

addLinkFlags

See Also

addCompileFlags | addDefines | getLinkFlags

Topics

“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-17

2 Alphabetical List

2-18

addLinkObjects

Add link objects to model build information

Syntax

addLinkObjects (buildinfo, linkobjs, paths,priority,precompiled,
linkonly, groups)

Description

addLinkObjects (buildinfo, linkobjs, paths,priority,precompiled,
linkonly, groups) specifies included files and paths to add to the build information.

The function requires the buildinfo, 1inkobs, and paths arguments. You can
optionally select priority for link objects, select whether the objects are precompiled,
select whether the objects are 1inkonly objects, and apply a groups argument to group
your options.

The code generator stores the included link object and path options in a build
information object. The function adds options to the object based on the order in which
you specify them.

Examples

Add Link Objects to Build Information

Add the linkable objects 1ibobj1 and 1ibobj2 to the build information
myModelBuildInfo. Set the priorities of the objects to 26 and 10, respectively. Because
libob7j2 is assigned the lower numeric priority value and has the higher priority, the
function orders the objects such that 1ibob7j2 precedes 1ibobij1 in the vector.

addLinkObjects

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects (myModelBuildInfo, {'libobjl' 'libobj2'},
{'"/proj/lib/1libl" '/proj/lib/1lib2"'}, [26 101]);

Add Prioritized Link-Only Link Objects to Build Information

Add the linkable objects 1ibobj1l and 1ibobj2 to the build information
myModelBuildInfo. Mark both objects as link-only. Since individual priorities are not
specified, the function adds the objects to the vector in the order specified.

myModelBuildInfo = RTW.BuildInfo;

addLinkObjects (myModelBuildInfo, {'libobjl"' 'libobj2'},
{"/proj/lib/1libl" '/proj/lib/1lib2'},1000,
false, true);

Add Precompiled Link Objects to MyTest Group

Add the linkable objects 1ibobj1l and 1ibobj2 to the build information
myModelBuildInfo. Set the priorities of the objects to 26 and 10, respectively. Mark
both objects as precompiled. Group them under the name MyTest.

myModelBuildInfo = RTW.BuildInfo;

addLinkObjects (myModelBuildInfo, {'libobjl"' '"libobj2'},
{'"/proj/lib/1libl" '/proj/lib/1ib2'}, [26 10],
true, false, '"MyTest');

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

linkobjs — List of linkable object files to add to build information
character vector | array of character vectors

You can specify the 1inkobjs argument as a character vector or as an array of character
vectors. If you specify the 1inkobjs argument as multiple character vectors, for
example, '1ibobjl' 'libobj2', the 1inkobjs argument is added to the build
information as an array of character vectors.

2-19

2 Alphabetical List

2-20

The function removes duplicate linkable object entries with an exact match of a path and
file name to a previously defined entry in the build information object.

Example: '1ibobjl"

paths — List of included file paths to add to build information
character vector | array of character vectors

You can specify the paths argument as a character vector or as an array of character
vectors. If you specify a single path as a character vector, the function uses that path for
all files. If you specify the paths argument as multiple character vectors, for example, '/
proj/lib/1libl"' and '/proj/lib/1ib2"', the paths argument is added to the build
information as an array of character vectors.

Example: ' /proj/1ib/1ibl’

priority — List of priority values for link objects to add to build information
1000 (default) | numeric value | array of numeric values

A numeric value or an array of numeric values that indicates the relative priority of each
specified link object. Lower values have higher priority.
Example: 1000

precompiled — List of precompiled indicators for link objects to add to build information
false (default) | true | array of logical values

A logical value or an array of logical values that indicates whether each specified link
object 1s precompiled. The logical value true indicates precompiled.

Example: false

linkonly — List of link-only indicators for link objects to add to build information
false (default) | true

A logical value or an array of logical values that indicates whether each specified link
object is link-only (no precompilation). The logical value true indicates link-only. If
linkonlyis true, the value of the precompiled argument is ignored.

Example: false

groups — Optional group name for the added link object files
character vector | array of character vectors

addLinkObjects

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'MyTest1l' 'MyTest2', the
function relates the groups to the 1inkob7js in order of appearance. For example, the
linkobjs argument '1ibobjl' 'libobj2' is an array of character vectors with two
elements. The first element is in the 'MyTest1' group, and the second element is in the
'MyTest2' group.

Example: 'MyTestl' 'MyTest2'

See Also

addIncludePaths | addSourceFiles | addSourcePaths | findIncludeFiles |
getIncludeFiles | updateFilePathsAndExtensions | updateFileSeparator

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-21

2 Alphabetical List

2-22

addNonBuildFiles

Add nonbuild-related files to model build information

Syntax

addNonBuildFiles (buildinfo, filenames, paths, groups)

Description

addNonBuildFiles (buildinfo, filenames, paths, groups) specifies nonbuild-
related files and paths to add to the build information.

The function requires the buildinfo and filenames arguments. You can use an
optional paths argument to specify the included file paths and use an optional groups
argument to group your options.

The code generator stores the nonbuild-related file and path options in a build
information object. The function adds options to the object based on the order in which
you specify them.

Examples

Add Nonbuild File to DocFiles Group

Add the nonbuild-related file readme . txt to the build information myModelBuildInfo,
and place the file in the group DocFiles.

myModelBuildInfo = RTW.BuildInfo;
addNonBuildFiles (myModelBuildInfo,
'readme.txt','/proj/docs', 'DocFiles"');

addNonBuildFiles

Add Nonbuild Files to DLLFiles Group

Add the nonbuild-related files myutilityl.dll and myutility2.d1l1l to the build
information myModelBuildInfo, and place the files in the group DLLFiles.

myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles (myModelBuildInfo,
{'myutilityl.dll' 'myutility2.dll'},
'/proj/dlls','DLLFiles');

Add Nonbuild Files with Wildcard to DLLFiles Group

Add nonbuild-related files (. d11 files identified with a wildcard character) in a specified
folder to the build information myMode1BuildInfo, and place the files in the group
DLLFiles.

myModelBuildInfo = RTW.BuildInfo;
addNonBuildFiles (myModelBuildInfo,
'*.d11',"'"/proj/dlls', 'DLLFiles"');

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

filenames — List of nonbuild-related files to add to build information

character vector | array of character vectors

You can specify the filenames argument as a character vector or as an array of
character vectors. If you specify the filenames argument as multiple character vectors,
for example, 'etc.dll' 'etc private.dll', the filenames argument is added to
the build information as an array of character vectors.

If the dot delimiter (.) is present, the file name text can include wildcard characters.
Examplesare "*.*' '* dl11',and '*.d*"'.

The function removes duplicate nonbuild-related file entries with an exact match of a
path and file name to a previously defined entry in the build information object.

Example: '*.d11"

2-23

2 Alphabetical List

2-24

paths — List of nonbuild-related file paths to add to build information
character vector | array of character vectors

You can specify the paths argument as a character vector or as an array of character
vectors. If you specify a single path as a character vector, the function uses that path for
all files. If you specify the paths argument as multiple character vectors, for example, '/
proj/dll' and '/proj/docs’', the paths argument is added to the build information
as an array of character vectors.

Example: ' /proj/dll"

groups — Optional group name for the added nonbuild-related files
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'DLLFiles' 'DLLFiles'
'DocFiles', the function relates the groups to the filenames in order of appearance.
For example, the filenames argument ' 'myutilityl.dll'' ''myutility2.dll"''
'readme. txt' is an array of character vectors with three elements. The first element is
in the 'DLLFiles"' group, the second element is in the 'DLLFiles' group, and the third
element is in the 'DocFiles' group.

Example: 'DLLFiles' 'DLLFiles' 'DocFiles'

See Also

getNonBuildFiles

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2008a

addSourceFiles

addSourceFiles

Add source files to model build information

Syntax

addSourceFiles (buildinfo, filenames,paths, groups)

Description

addSourceFiles (buildinfo, filenames, paths, groups) specifies source files and
paths to add to the build information.

The function requires the buildinfo and filenames arguments. You can use an
optional groups argument to group your options.

The code generator stores the source file and path options in a build information object.
The function adds options to the object based on the order in which you specify them.

Examples

Add Source File to Drivers Group

Add the source file driver.c to the build information myModel1BuildInfo and place the
file in the group Drivers.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles (myModelBuildInfo, 'driver.c',
'/proj/src', 'Drivers');

2-25

2 Alphabetical List

Add Source Files to a Group

Add the source files testl.c and test2.c to the build information myModelBuildInfo
and place the files in the group Tests.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles (myModelBuildInfo,
{'"testl.c' 'test2.c'},
'/proj/src', 'Tests');

Add Source Files to Groups

Add the source files testl.c, test2.c, and driver.c to the build information
myModelBuildInfo. Group the files testl.c and test2.c with the character vector
Tests. Group the file driver. c with the character vector Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles (myModelBuildInfo,

estl.c est2.c river.c'},
{'testl.c' 'test2.c' 'dri "}
'/proj/src',

ests ests rivers ;
{lT t |l IT t Al ID‘ l})

Add Source Files with Wildcard to CFiles Group

Add the . c files in a specified folder to the build information myModelBuildInfo and
place the files in the group CFiles.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles (myModelBuildInfo,
'*.c',"/proj/src','CFiles');

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

filenames — List of source files to add to build information
character vector | array of character vectors

2-26

addSourceFiles

You can specify the filenames argument as a character vector or as an array of
character vectors. If you specify the £ilenames argument as multiple character vectors,
for example, 'etc.c' 'etc private.c', the filenames argument is added to the
build information as an array of character vectors.

If the dot delimiter (.) is present, the file name text can include wildcard characters.
Examplesare "*.*' '* c' and '*.c*"'.

The function removes duplicate included file entries with an exact match of a path and
file name to a previously defined entry in the build information object.

Example: '*.c"

paths — List of source file paths to add to build information
character vector | array of character vectors

You can specify the paths argument as a character vector or as an array of character
vectors. If you specify a single path as a character vector, the function uses that path for
all files. If you specify the paths argument as multiple character vectors, for example, '/
proj/src' and '/proj/inc', the paths argument is added to the build information as
an array of character vectors.

Example: ' /proj/src'

groups — Optional group name for the added source files
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'Tests' 'Tests' 'Drivers’,
the function relates the groups to the £ilenames in order of appearance. For example,
the filenames argument 'testl.c' 'test2.c' 'driver.c' is an array of character
vectors with three elements. The first element is in the 'Tests' group, and the second
element is in the 'Tests' group, and the third element is in the 'Drivers’' group.

Example: 'Tests' 'Tests' 'Drivers'

See Also

addIncludeFiles | addIncludePaths | addSourcePaths | getSourceFiles |
updateFilePathsAndExtensions | updateFileSeparator

2-27

2 Alphabetical List

Topics

“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-28

addSourcePaths

addSourcePaths

Add source paths to model build information

Syntax

addSourcePaths (buildinfo, paths, groups)

Description

addSourcePaths (buildinfo, paths, groups) specifies source file paths to add to the
build information.

The function requires the buildinfo and paths arguments. You can use an optional
groups argument to group your options.

The code generator stores the source file path options in a build information object. The
function adds options to the object based on the order in which you specify them.

The code generator does not check whether a specified path is valid.

Examples

Add Source File Path to Build Information

Add the source path /etcproj/etc/etc _build to the build information
myModelBuildInfo

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths (myModelBuildInfo,
'/etcproj/etc/etc_build');

2-29

2 Alphabetical List

Add Source File Paths to a Group

Add the source paths /etcproj/etclib and /etcproj/etc/etc build to the build
information myModelBuildInfo and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths (myModelBuildInfo,
{'/etcproj/etclib' '/etcproj/etc/etc build'}, 'etc');

Add Source File Paths to Groups

Add the source paths /etcproj/etclib, /etcproj/etc/etc build, and /
common/1ib to the build information myModelBuildInfo. Group the paths /etc/
proj/etclib and /etcproj/etc/etc build with the character vector etc and the
path /common/1ib with the character vector shared.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths (myModelBuildInfo, ...
{'/etc/proj/etclib' '/etcproj/etc/etc build'...
'/common/lib'}, {'etc' 'etc' 'shared'}):;

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

paths — List of source file paths to add to build information
character vector | array of character vectors

You can specify the paths argument as a character vector or as an array of character
vectors. If you specify a single path as a character vector, the function uses that path for
all files. If you specify the paths argument as multiple character vectors, for example, '/
proj/src' and '/proj/inc', the paths argument is added to the build information as
an array of character vectors.

The function removes duplicate source file path entries with an exact match of a path
and file name to a previously defined entry in the build information object.

Example: ' /proj/src’

2-30

addSourcePaths

groups — Optional group name for the added source files
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'etc' 'etc' 'shared', the
function relates the groups to the paths in order of appearance. For example, the
paths argument ' /etc/proj/etclib' '/etcproj/etc/etc build' '/common/
1lib' is an array of character vectors with three elements. The first element is in the
'etc' group, the second element is in the 'etc' group, and the third element is in the
'shared' group.

Example: 'etc' 'etc' 'shared'

See Also

addIncludeFiles | addIncludePaths | addSourceFiles | getSourcePaths |
updateFilePathsAndExtensions | updateFileSeparator

Topics

“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-31

2 Alphabetical List

2-32

addTMFTokens

Add template makefile (TMF) tokens to model build information

Syntax

addTMFTokens (buildinfo, tokennames, tokenvalues, groups)

Description

addTMFTokens (buildinfo, tokennames, tokenvalues, groups) specifies TMF
tokens and values to add to the build information.

To provide build-time information to help customize makefile generation, call the
addTMFTokens function inside a post-code-generation command. The tokens specified in
the addTMFTokens function call must be handled in the template makefile (TMF) for the
target selected for your model. For example, you can call addTMFTokens in a post-code-
generation command to add a TMF token named | >CUSTOM OUTNAME< | with a token
value that specifies an output file name for the build. To achieve the result you want, the
TMF must apply an action with the value of | >CUSTOM OUTNAME< |. (See “Examples” on
page 2-0)

The addTMFTokens function adds specified TMF token names and values to the model
build information. The code generator stores the TMF tokens in a vector. The function
adds the tokens to the end of the vector in the order that you specify them.

The function requires the buildinfo, tokennames, and tokenvalues arguments. You

can use an optional groups argument to group your options. You can specify groups as
a character vector or as an array of character vectors.

Examples

addTMFTokens

Add TMF Tokens to Build Information

Inside a post-code-generation command, add the TMF token |>CUSTOM OUTNAME<| and
its value to build information myMode1BuildInfo, and place the token in the group
LINK INFO.

myModelBuildInfo = RTW.BuildInfo;
addTMFTokens (myModelBuildInfo,
' |>CUSTOM OUTNAME<|', 'foo.exe', 'LINK INFO'):;

Apply Build Information as Tokens in TMF Build

In the TMF for the target selected for your model, this code uses the token value to
achieve the result that you want:

CUSTOM OUTNAME = |>CUSTOM OUTNAME< |
target:
$(LD) -o $(CUSTOM OUTNAME)

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

tokennames — Specifies names of TMF tokens to add to the build information
character vector | array of character vectors

You can specify the tokennames argument as a character vector or as an array of
character vectors. If you specify the tokennames argument as multiple character
vectors, for example, ' | >CUSTOM OUTNAME<|' '|>COMPUTER<|', the tokennames
argument is added to the build information as an array of character vectors.

Example: ' | >CUSTOM OUTNAME<|' '|>COMPUTER<| '
tokenvalues — Specifies TMF token values (for the added tokens) to add to the build

information
character vector | array of character vectors

2-33

2 Alphabetical List

2-34

You can specify the tokenvalues argument as a character vector or as an array of
character vectors. If you specify the tokenvalues argument as multiple character
vectors, for example, ' | >CUSTOM OUTNAME<|' 'PCWING64', the tokennames argument
is added to the build information as an array of character vectors.

Example: 'foo.exe' 'PCWING4'

groups — Optional group name for the added TMF tokens
character vector | array of character vectors

You can specify the groups argument as a character vector or as an array of character
vectors. If you specify multiple groups, for example, 'LINK INFO' 'COMPUTER INFO',
the function relates the groups to the tokennames in order of appearance. For example,
the tokennames argument ' | >CUSTOM OUTINAME<|' '|>COMPUTER<|' is an array of
character vectors with two elements. The first element is in the 'LINK INFO' group, and
the second element is in the 'COMPUTER INFO' group.

Example: 'LINK INFO' 'COMPUTER INFO'

See Also

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2009b

coder.report.close

coder.report.close

Close HTML code generation report

Syntax

coder.report.close()

Description

coder.report.close () closes the HTML code generation report.

Examples

Close code generation report for a model

After opening a code generation report for rtwdemo counter, close the report.

coder.report.close()

See Also

coder.report.generate | coder.report.open

Topics
“Reports for Code Generation”

Introduced in R2012a

2-35

2 Alphabetical List

2-36

coder.report.generate

Generate HTML code generation report

Syntax

coder.report.generate (model)
coder.report.generate (subsystem)
coder.report.generate (model,Name, Value)

Description

coder.report.generate (model) generates a code generation report for the model.
The build folder for the model must be present in the current working folder.

coder.report.generate (subsystem) generates the code generation report for the
subsystem. The build folder for the subsystem must be present in the current working
folder.

coder.report.generate (model,Name,Value) generates the code generation report
using the current model configuration and additional options specified by one or more
Name, Value pair arguments. Possible values for the Name, Value arguments are
parameters on the Code Generation > Report pane. Without modifying the model
configuration, using the Name, Value arguments you can generate a report with a
different report configuration.

Examples

Generate Code Generation Report for Model

Open the model rtwdemo counter

open rtwdemo counter

Build the model. The model is configured to create and open a code generation report.

coder.report.generate

rtwbuild('rtwdemo counter');
Close the code generation report.

coder.report.close;

Generate a code generation report.

coder.report.generate ('rtwdemo counter');

Generate Code Generation Report for Subsystem
Open the model rtwdemo counter.
open rtwdemo counter

Build the subsystem. The model is configured to create and open a code generation
report.

rtwbuild ('rtwdemo counter/Amplifier');

Close the code generation report.

coder.report.close;

Generate a code generation report for the subsystem.

coder.report.generate ('rtwdemo counter/Amplifier');

Generate Code Generation Report to Include Static Code Metrics Report

Generate a code generation report to include a static code metrics report after the build
process, without modifying the model.

Open the model rtwdemo hyperlinks.

open rtwdemo hyperlinks

Build the model. The model is configured to create and open a code generation report.

rtwbuild('rtwdemo hyperlinks');

2-37

2 Alphabetical List

2-38

Close the code generation report.

coder.report.close;

Generate a code generation report that includes the static code metrics report.

coder.report.generate ('rtwdemo hyperlinks',
'GenerateCodeMetricsReport','on');

The code generation report opens. In the left navigation pane, click Static Code Metrics
Report to view the report.

Input Arguments

model — Model name

character vector

Model name specified as a character vector
Example: ‘rtwdemo counter’

Data Types: char

subsystem — Subsystem name

character vector

Subsystem name specified as a character vector
Example: ‘rtwdemo counter/Amplifier’

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN, ValueN.

Each Name, Value argument corresponds to a parameter on the Configuration
Parameters Code Generation > Report pane. When the configuration parameter
GenerateReport is on, the parameters are enabled. The Name, Value arguments are

coder.report.generate

used only for generating the current report. The arguments will override, but not modify,

the parameters in the model configuration. The following parameters require an
Embedded Coder® license.

Example: 'GenerateWebview', 'on', 'GenerateCodeMetricsReport', 'on'
includes a model Web view and static code metrics in the code generation report.

Navigation

IncludeHyperlinkInReport — Code-to-model hyperlinks
‘off’ | ‘on’

Code-to-model hyperlinks, specified as ‘on’ or ‘0f£’. Specify ‘on’ to include code-to-model
hyperlinks in the code generation report. The hyperlinks link code to the corresponding
blocks, Stateflow® objects, and MATLAB® functions in the model diagram. For more
information see “Code-to-model” on page 10-6.

Example: ‘' IncludeHyperlinkInReport', 'on"’
Data Types: char

GenerateTraceInfo — Model-to-code highlighting
‘off’ | ‘on’

Model-to-code highlighting, specified as ‘on’ or ‘of £’. Specify ‘on’ to include model-to-code
highlighting in the code generation report. For more information see “Model-to-code” on
page 10-8.

Example: ‘' GenerateTraceInfo', 'on"
Data Types: char

GenerateWebview — Model Web view
‘off’ | ‘on’

Model Web view, specified as ‘on’ or ‘of £’. Specify ‘on’ to include the model Web view in
the code generation report. For more information, see “Generate model Web view” on
page 5-10.

Example: ‘' GenerateWebview', 'on"’

Data Types: char

2-39

2 Alphabetical List

Traceability Report Contents

GenerateTraceReport — Summary of eliminated and virtual blocks

fm|.'

‘o on’

Summary of eliminated and virtual blocks, specified as ‘on’ or ‘of £’. Specify ‘on’ to
include a summary of eliminated and virtual blocks in the code generation report. For
more information, see “Eliminated / virtual blocks” on page 10-11.

Example: ‘' GenerateTraceReport', 'on"’

Data Types: char

GenerateTraceReportSl — Summary of Simulink blocks and the corresponding code
location

‘off’ | ‘on’

Summary of the Simulink blocks and the corresponding code location, specified as ‘on’ or
‘of £”. Specify ‘on’ to include a summary of the Simulink blocks and the corresponding
code location in the code generation report. For more information, see “Traceable
Simulink blocks” on page 10-13.

Vo

Example: ‘' GenerateTraceReportSl', 'on
Data Types: char
GenerateTraceReportsSf — Summary of Stateflow objects and the corresponding code

location
‘of f’ | ‘on’

Summary of the Stateflow objects and the corresponding code location, specified as ‘on’ or
‘of £”. Specify ‘on’ to include a summary of Stateflow objects and the corresponding code
location in the code generation report. For more information, see “Traceable Stateflow
objects” on page 10-15.

Example: ‘' GenerateTraceReportSf', 'on"’
Data Types: char
GenerateTraceReportEml — Summary of MATLAB functions and the corresponding code

location
‘of £’ | ‘on’

2-40

coder.report.generate

Summary of the MATLAB functions and the corresponding code location, specified as ‘on’
or ‘of f’. Specify ‘on’ to include a summary of the MATLAB objects and the corresponding
code location in the code generation report. For more information, see “Traceable
MATLAB functions” on page 10-17.

Example: ‘' GenerateTraceReportEml', 'on"’
Data Types: char
Metrics

GenerateCodeMetricsReport — Static code metrics
‘of £ | ‘on’

Static code metrics, specified as ‘on’ or ‘of £”. Specify ‘on’ to include static code metrics in
the code generation report. For more information, see “Static code metrics” on page 5-
12.

1 v

Example: ‘' GenerateCodeMetricsReport', 'on

Data Types: char

See Also

coder.report.close | coder.report.open

Topics

“Reports for Code Generation”

“Generate a Code Generation Report”

“Generate Code Generation Report After Build Process”

Introduced in R2012a

2-41

2 Alphabetical List

2-42

coder.report.open

Open existing HTML code generation report

Syntax

coder.report.open (model)
coder.report.open (subsystem)

Description

coder.report.open (model) opens a code generation report for the model. The build
folder for the model must be present in the current working folder.

coder.report.open (subsystem) opens a code generation report for the subsystem.
The build folder for the subsystem must be present in the current working folder.

Examples

Open code generation report for a model

After generating code for rtwdemo counter, open a code generation report for the
model.

coder.report.open ('rtwdemo counter')

Open code generation report for a subsystem

Open a code generation report for the subsystem ‘Amplifier’ in model
‘rtwdemo_counter’.

coder.report.open

coder.report.open('rtwdemo counter/Amplifier")

Input Arguments

model — Model name

character vector

Model name specified as a character vector
Example: ‘rtwdemo_counter’

Data Types: char

subsystem — Subsystem name
character vector

Subsystem name specified as a character vector
Example: ‘rtwdemo counter/Amplifier’

Data Types: char

See Also

coder.report.close | coder.report.generate

Topics
“Reports for Code Generation”
“Open Code Generation Report”

Introduced in R2012a

2-43

2 Alphabetical List

2-44

findBuildArg

Find a specific build argument in model build information

Syntax

[identifier,value] = findBuildArg(buildinfo,buildArgName)

Description

[identifier,value] = findBuildArg(buildinfo,buildArgName) searches for a
build argument from the build information.

If the build argument is present in the model build information, the function returns the
name and value.

Examples

Find Build Argument in Build Information

Find a build argument and its value stored in build information myModelBuildInfo.
Then, view the argument identifier and value.

load buildInfo.mat

myModelBuildInfo = buildInfo;

myBuildArgExtmodeStaticAlloc = 'EXTMODE STATIC ALLOC';

[buildArgId buildArgValue] = findBuildArg(buildInfo,
myBuildArgExtmodeStaticAlloc) ;

>> buildArgId
buildArgId =

'EXTMODE STATIC ALLOC'

findBuildArg

>> buildArgValue
buildArgValue =

!

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

buildArgName — Name of build argument to find in build information
character vector

To get the build argument identifiers from the build information, use the getBuildArgs
function.

Output Arguments

identifier — Name of the build argument
character vector

value — Value of the build argument
character vector

See Also

getBuildArgs

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2014a

2-45

2 Alphabetical List

findIncludeFiles

Find and add include (header) files to model build information

Syntax

findIncludeFiles (buildinfo,extPatterns)

Description

findIncludeFiles (buildinfo, extPatterns) searches for and adds include files to
the build information.

Use the findIncludeFiles function to:

* Search for include files in source and include paths from the build information.

* Apply the optional extPatterns argument to specify file name extension patterns for
search.

+ Add the found files with their full paths to the build information.

+ Delete duplicate include file entries from the build information.

Examples

Find and Add Include Files to Build Information

Find include files with file name extension .h that are in the build information,
myModelBuildInfo. Add the full paths for these files to the build information. View the
include files from the build information.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths (myModelBuildInfo, {fullfile (pwd, ...
'mycustomheaders') }, 'myheaders');

findIncludeFiles (myModelBuildInfo) ;

headerfiles = getIncludeFiles (myModelBuildInfo, true,false);

2-46

findIncludeFiles

>> headerfiles
headerfiles =

'W:\work\mycustomheaders\myheader.h'

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

extPatterns — Patterns of file name extensions that specify files for the search
'* h' (default) | cell array

To specify files for the search, the character vectors in the extPatterns argument:

* Must start with an asterisk immediately followed by a period (*.)

+ Can include a combination of alphanumeric and underscore (_) characters

Example: "*.h' '"* . hpp' '*.x*'

See Also

addIncludeFiles | getIncludeFiles | packNGo

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2006b

2-47

2 Alphabetical List

2-48

getBuildArgs

Get build arguments from model build information

Syntax

[identifiers,values] getBuildArgs (buildinfo, includeGrouplDs,

excludeGroupIDs)

Description

[identifiers,values] getBuildArgs (buildinfo, includeGrouplIDs,
excludeGroupIDs) returns build argument identifiers and values from the build
information.

The function requires the buildinfo, identifiers, and values arguments. You can
use optional includeGroupIDs and excludeGroupIDs arguments. These optional
arguments let you include or exclude groups selectively from the build arguments
returned by the function.

If you choose to specify excludeGroupIDs and omit includeGroupIDs, specify a null
character vector (' ') for includeGroupIDs.

Examples

Get Build Arguments from Build Information

After you build a model, the build information is available in the buildInfo.mat file.
This example shows how to get the build arguments from the build information object,
myModelBuildInfo.

load buildInfo.mat
myModelBuildInfo = buildInfo;
[buildArgIds,buildArgValues] = getBuildArgs (myModelBuildInfo);

getBuildArgs

To get the value of a single build argument from the build information, use the
findBuildArg function.

View Build Argument Identifiers

To view the build argument identifiers, display buildArgIds.

>> buildArgIds

buildArglIds =

"GENERATE ERT S _FUNCTION'
'INCLUDE MDL TERMINATE FCN'
'"COMBINE OUTPUT UPDATE FCNS'
'"MAT FILE'

'"MULTI INSTANCE CODE'
"INTEGER CODE'

'GENERATE ASAP2'

"EXT_ MODE'

'"EXTMODE_STATIC ALLOC'
"EXTMODE _STATIC ALLOC_SIZE'
'"EXTMODE_TRANSPORT'
"TMW_EXTMODE_TESTING'
'MODELLIB'

' SHARED SRC'

'SHARED SRC_DIR'
'SHARED BIN DIR'

'SHARED LIB'

'"MODELREF LINK_LIBS'
'"RELATIVE PATH TO ANCHOR'
'"MODELREF TARGET TYPE'

' ISPROTECTINGMODEL'

View Build Argument Values

To view the build argument values, display buildArgvalues.

>> buildArgValues

buildArgValues =

2-49

2 Alphabetical List

2-50

'NONE '
'NOTPROTECTING'

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

includeGroupIDs — Group identifiers of build arguments to include in the return from the
function
cell array

To use the includeGroupIDs argument, view available build argument identifier
groups by using myGroups = getGroups (buildInfo).

Example: '

excludeGroupIDs — Group identifiers of build arguments to exclude from the return from

the function
cell array

getBuildArgs

To use the excludeGroupIDs argument, view available build argument identifier
groups by using myGroups = getGroups (buildInfo).

Example: '’

Output Arguments

identifiers — Names of the build arguments
cell array

values — values of the build arguments
cell array

See Also

findBuildArg

Topics

“Customize Post-Code-Generation Build Processing’

4

Introduced in R2014a

2-51

2 Alphabetical List

2-52

getCompileFlags

Get compiler options from model build information

Syntax

options = getCompileFlags (buildinfo, includeGroups, excludeGroups)
Description
options = getCompileFlags (buildinfo,includeGroups,excludeGroups)

returns compiler options from the build information.

The function requires the buildinfo argument. You can use optional includeGroups
and excludeGroups arguments. These optional arguments let you include or exclude
groups selectively from the compiler options returned by the function.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector (' ') for includeGroups.

Examples

Get Compiler Options from Build Information

Get the compiler options stored in the build information myModelBuildInfo.
myModelBuildInfo = RTW.BuildInfo;
addCompileFlags (myModelBuildInfo, {'-2i -Wall' '-03'},
'OPTS") ;
compflags = getCompileFlags (myModelBuildInfo) ;

>> compflags

compflags =

getCompileFlags

'-7i -Wall' '-03"

Get Compiler Options with Include Group Argument

Get the compiler options stored with the group name Debug in the build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags (myModelBuildInfo, {'-2i -Wall' '-03'},
{'Debug' 'MemOpt'}):;

compflags = getCompileFlags (myModelBuildInfo, "Debug') ;

>> compflags
compflags =

'-Z1 -Wall'

Get Compiler Options with Exclude Group Argument

Get the compiler options stored in the build information myModelBuildInfo, except
those options with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags (myModelBuildInfo, {'-2i -Wall' '-03'},
{'Debug' 'MemOpt'}):;

compflags = getCompileFlags (myModelBuildInfo,'', "Debug');

>> compflags

compflags =

2-53

2 Alphabetical List

'-03"'

Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

includeGroups — Group names of compiler options to include in the return from the
function
cell array

To use the includeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: '’

excludeGroups — Group names of compiler options to exclude from the return from the

function
cell array

To use the excludeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'

Output Arguments

options — Compiler options from the build information
cell array

See Also

addCompileFlags | getDefines | getLinkFlags

Topics

“Customize Post-Code-Generation Build Processing”

2-54

getCompileFlags

Introduced in R2006a

2-55

2 Alphabetical List

2-56

getDefines

Get preprocessor macro definitions from model build information

Syntax

[macrodefs,identifiers,values] = getDefines (buildinfo, includeGroups,
excludeGroups)
Description
[macrodefs,identifiers,values] = getDefines (buildinfo, includeGroups,

excludeGroups) returns preprocessor macro definitions from the build information.

The function requires the buildinfo, macrodefs, identifiers, and values
arguments. You can use optional includeGroups and excludeGroups arguments.
These optional arguments let you include or exclude groups selectively from the
preprocessor macro definitions returned by the function.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector (' ') for includeGroups.

Examples

Get Macro Definitions from Build Information

Get the preprocessor macro definitions stored in the build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo,

{'"PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'}, 'OPTS"');
[defs,names,values] = getDefines (myModelBuildInfo) ;
>> defs

getDefines

defs =
'-DPROTO=first' '-DDEBUG"' '-Dtest’ '-DPRODUCTION'
>> names
names =
'PROTO"
'DEBUG'
'test'!
'PRODUCTION'
>> values
values =
'first'

Get Macro Definitions with Include Group Argument

Get the preprocessor macro definitions stored with the group name Debug in the build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo,

{"PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'},
{'Debug' 'Debug' 'Debug' 'Release'});
[defs,names,values] = getDefines (myModelBuildInfo, 'Debug');
>> defs
defs =
'-DPROTO=first"' '-DDEBUG"' '-Dtest’

2-57

2 Alphabetical List

Get Macro Definitions with Exclude Group Argument

Get the preprocessor macro definitions stored in the build information
myModelBuildInfo, except those definitions with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo,

{"PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'},
{'Debug' 'Debug' 'Debug' 'Release'});
[defs,names,values] = getDefines (myModelBuildInfo,'', 'Debug');

' -DPRODUCTION'

Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

includeGroups — Group names of macro definitions to include in the return from the
function
cell array

To use the includeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'

excludeGroups — Group names of macro definitions to exclude from the return from the

function
cell array

To use the excludeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'

2-58

getDefines

Output Arguments

macrodefs — Macro definitions from the build information
cell array

The macrodefs provide the complete macro definitions with a -D prefix. When the
function returns a definition:

+ If the -D was not specified when the definition was added to the build information,
prepends a -D to the definition.

* Changes a lowercase —-d to -D.

identifiers — Names of the macros from the build information
cell array

values — Values assigned to the macros from the build information
cell array

The values provide anything specified to the right of the first equal sign in the macro
definition. The default is an empty character vector (' ').

See Also

addDefines | getCompileFlags | getLinkFlags

Topics

“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-59

2 Alphabetical List

2-60

getFullFileList

Get list of files from model build information

Syntax

[fPathNames, names] = getFullFilelList (buildinfo, fcase)

Description

[fPathNames, names] getFullFilelList (buildinfo, fcase) returns the fully
qualified paths and names of all files, or files of a selected type (source, include, or
nonbuild), from the build information.

The function requires the buildinfo, fPathNames, and names arguments. You can use
the optional fcase argument. This optional argument lets you include or exclude file
cases selectively from file list returned by the function.

The packNGo function calls getFullFileList to return a list of files in the build
information before processing files for packaging.

The makefile for the model build resolves file locations based on source paths and rules.
The build process does not require you to resolve the path of every file in the build
information. The getFullFileList function returns the path for each file:

+ If a path was explicitly associated with the file when it was added.

+ Ifyou called updateFilePathsAndExtensions to resolve file paths and extensions
before calling getFullFileList.

Examples

getFullFileList

Get Full File List of All Files

After building a model and loading the generated buildInfo.mat file, you can list the
files stored in a build information variable, myMode1BuildInfo. This example returns
information for the current model and descendants (submodels).

myModelBuildInfo = RTW.BuildInfo;
[fPathNames,names] = getFullFileList (myModelBuildInfo) ;

Get Full File List of Source Files

If you use any of the fcase options, you limit the listing to the files stored in the
myModelBuildInfo variable for the current model. This example returns information
for the current model only (no descendants or submodels).

[fPathNames,names] = getFullFilelList (myModelBuildInfo, 'source');

Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

fcase — File case to return from the build information
"' (default) | 'source' | 'include' | "nonbuild'

The fcase argument selects whether the function returns the full file list for all files in
the build information or returns selected cases of files. If you omit the argument or
specify a null character vector (' '), the function returns all files from the build
information.

Specify Function Action

'source' Returns source files from the build information.
'include' Returns include files from the build information.
"nonbuild’ Returns nonbuild files from the build information.

Example: 'source’

2-61

2 Alphabetical List

Output Arguments

fPathNames — Fully qualified file paths from the build information
cell array

names — File names from the build information
cell array

See Also

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2008a

2-62

getincludeFiles

getincludeFiles

Get include files from model build information

Syntax

files = getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

Description

files = getlIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups) returns the names of include
files from the build information.

The function requires the buildinfo, concatenatePaths, and replaceMatlabroot
arguments. You can use optional includeGroups and excludeGroups arguments.
These optional arguments let you include or exclude groups selectively from the include
files returned by the function.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector (' ') for includeGroups.

The makefile for the model build resolves file locations based on source paths and rules.
The build process does not require you to resolve the path of every file in the build
information. If you specify true for the concatenatePaths argument, the
getIncludeFiles function returns the path for each file:

+ If a path was explicitly associated with the file when it was added.

+ If you called updateFilePathsAndExtensions to resolve file paths and extensions
before calling getIncludeFiles.

Examples

2-63

2 Alphabetical List

Get Include Paths and Files from Build Information

Get the include paths and file names from the build information, myModelBuildInfo.
myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles (myModelBuildInfo, {'etc.h' 'etc private.h'
'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc build'
'/common/lib'}, {'etc' 'etc' 'shared'}):
incfiles=getIncludeFiles (myModelBuildInfo, true, false);
>> incfiles

incfiles =

[1x22 char] [1x36 char] [1x21 char]

Get Include Paths and Files with Include Group Argument

Get the names of include files in group etc from the build information,
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles (myModelBuildInfo, {'etc.h' 'etc private.h'
'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc build'

'/common/lib'}, {'etc' 'etc' 'shared'}):;
incfiles = getIncludeFiles (myModelBuildInfo, false,false,
'etc');

>> incfiles

'etc.h' 'etc_private.h'

Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

2-64

getincludeFiles

concatenatePaths — Choice of whether to concatenate paths and file names in return
false | true

Specify Function Action

true Concatenates and returns each file name with its corresponding
path.

false Returns only file names.

Example: true

replaceMatlabroot — Choice of whether to replace the $ (MATLAB ROOT) token with
absolute paths in return
false | true

Use the replaceMatlabroot argument to control whether the function includes the
MATLAB root definition in the output it returns.

Specify Function Action

true Replaces the token $ (MATLAB ROOT) with the absolute path for
your MATLAB installation folder.

false Does not replace the token $ (MATLAB ROOT).

Example: true

includeGroups — Group names of include paths and files to include in the return from the
function
cell array

To use the includeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: '’

excludeGroups — Group names of include paths and files to exclude from the return from

the function
cell array

To use the excludeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'

2-65

2 Alphabetical List

2-66

Output Arguments

files — Names of include files from the build information
cell array

The names of include files that you add with the addIncludeFiles function. If you call
the packNGo function, the names include files that packNGo found and added while
packaging model code.

See Also

addIncludeFiles | findIncludeFiles | getIncludePaths | getSourceFiles |
getSourcePaths | updateFilePathsAndExtensions

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

getincludePaths

getincludePaths

Get include paths from model build information

Syntax

paths = getIncludePaths (buildinfo, replaceMatlabroot, includeGroups,
excludeGroups)

Description

paths = getIncludePaths (buildinfo, replaceMatlabroot, includeGroups,
excludeGroups) returns the names of include file paths from the build information.

The function requires the buildinfo and replaceMatlabroot arguments. You can use
optional includeGroups and excludeGroups arguments. These optional arguments let
you include or exclude groups selectively from the include paths returned by the function.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector (' ') for includeGroups.

Examples

Get Include Paths from Build Information

Get the include paths from the build information, myMode1BuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths (myModelBuildInfo, {'/etc/proj/etclib’
'/etcproj/etc/etc_build' '/common/lib'},
{'etc' 'etc' 'shared'});

incpaths = getIncludePaths (myModelBuildInfo, false);

>> incpaths

2-67

2 Alphabetical List

2-68

incpaths =

'\etc\proj\etclib' [1x22 char] '\common\1lib'

Get Include Paths with Include Group Argument

Get the paths in group shared from the build information, myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths (myModelBuildInfo, {'/etc/proj/etclib’
'/etcproj/etc/etc_build' '/common/lib'},
{'etc' 'etc' 'shared'});

incpaths = getIncludePaths (myModelBuildInfo, false, 'shared');

>> incpaths

incpaths =
'"\common\1lib'

Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

replaceMatlabroot — Choice of whether to replace the $ (MATLAB ROOT) token with
absolute paths in return from the function
false | true

Use the replaceMatlabroot argument to control whether the function includes the
MATLAB root definition in the output that it returns.

Specify Function Action

true Replaces the token $ (MATLAB ROOT) with the absolute path for
your MATLAB installation folder.

false Does not replace the token $ (MATLAB ROOT).

Example: true

getincludePaths

includeGroups — Group names of include paths to include in the return from the function
cell array

To use the includeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: '

excludeGroups — Group names of include paths to exclude from the return from the
function
cell array

To use the excludeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'

Output Arguments

paths — Paths of include files from the build information
cell array

See Also

addIncludePaths | getIncludeFiles | getSourceFiles | getSourcePaths

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-69

2 Alphabetical List

2-70

getLinkFlags

Get link options from model build information

Syntax

options = getlLinkFlags (buildinfo, includeGroups, excludeGroups)
Description
options = getLinkFlags (buildinfo, includeGroups, excludeGroups) returns

linker options from the build information.

The function requires the buildinfo argument. You can use optional includeGroups
and excludeGroups arguments. These optional arguments let you include or exclude
groups selectively from the compiler options returned by the function.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector (' ') for includeGroups.

Examples

Get Linker Options from Build Information

Get the linker options from the build information, myModelBuildInfo.
myModelBuildInfo = RTW.BuildInfo;

addLinkFlags (myModelBuildInfo, {'-MD -Gy' '-T"}, 'OPTS");
linkflags = getLinkFlags (myModelBuildInfo) ;

>> linkflags

linkflags =

getLinkFlags

Get Linker Options with Include Group Argument

Get the linker options with the group name Debug from the build information,
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addLinkFlags (myModelBuildInfo, {'-MD -Gy' '-T'"'},
{'Debug' 'MemOpt'}):;

linkflags = getLinkFlags (myModelBuildInfo, {'Debug'});

>> linkflags
linkflags =

'-MD -Gy'

Get Linker Options with Exclude Group Argument

Get the linker options from the build information myModelBuildInfo, except those
options with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags (myModelBuildInfo, {'-MD -Gy' '-T'"},
{'Debug' 'MemOpt'}):;
linkflags = getLinkFlags (myModelBuildInfo,'',{'Debug'});

>> linkflags

linkflags =

2-71

2 Alphabetical List

Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

includeGroups — Group hames of linker options to include in the return from the function
cell array

To use the includeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'
excludeGroups — Group names of linker options to exclude from the return from the
function

cell array

To use the excludeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: '’

Output Arguments

options — Linker options from the build information
cell array

See Also

addLinkFlags | getCompileFlags | getDefines

Topics

“Customize Post-Code-Generation Build Processing”

2-72

getLinkFlags

Introduced in R2006a

2-73

2 Alphabetical List

2-74

getNonBuildFiles

Get nonbuild-related files from model build information

Syntax

files = getNonBuildFiles (buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

Description

files = getNonBuildFiles (buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups) returns the names of non-

build files from the build information, such as DLL files required for a final executable or
a README file.

The function requires the buildinfo, concatenatePaths, and replaceMatlabroot
arguments. You can use optional includeGroups and excludeGroups arguments.
These optional arguments let you include or exclude groups selectively from the non-
build files returned by the function.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector (' ') for includeGroups.

The makefile for the model build resolves file locations based on source paths and rules.
The build process does not require you to resolve the path of every file in the build
information. If you specify true for the concatenatePaths argument, the
getNonBuildFiles function returns the path for each file:

+ If a path was explicitly associated with the file when it was added.

+ Ifyou called updateFilePathsAndExtensions to resolve file paths and extensions
before calling getIncludeFiles.

Examples

getNonBuildFiles

Get Nonbuild Files from Build Information

Get the nonbuild file names stored in the build information, myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles (myModelBuildInfo, { 'readme.txt' 'myutilityl.dll'
'myutility2.dl1'});

nonbuildfiles = getNonBuildFiles (myModelBuildInfo, false, false);

>> nonbuildfiles

nonbuildfiles =

'readme.txt' 'myutilityl.dll’ 'myutility2.d11’

Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

concatenatePaths — Choice of whether to concatenate paths and file names in return
from function
false | true

Specify Function Action

true Concatenates and returns each file name with its corresponding
path.

false Returns only file names.

Example: true
replaceMatlabroot — Choice of whether to replace the $ (MATLAB ROOT) token with
absolute paths in return from function

false | true

Use the replaceMatlabroot argument to control whether the function includes the
MATLAB root definition in the output that it returns.

2-75

2 Alphabetical List

Specify Function Action

true Replaces the token $ (MATLAB ROOT) with the absolute path for
your MATLAB installation folder.

false Does not replace the token $ (MATLAB ROOT).

Example: true

includeGroups — Group names of non-build files to include in the return from the function
cell array

To use the includeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'

excludeGroups — Group names of non-build files to exclude from the return from the
function
cell array

To use the excludeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'

Output Arguments

f£iles — Names of non-build files from the build information
cell array

See Also

addNonBuildFiles

Topics

“Customize Post-Code-Generation Build Processing”

Introduced in R2008a

2-76

getSourceFiles

getSourceFiles

Get source files from model build information

Syntax

srcfiles = getSourceFiles (buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

Description

srcfiles = getSourceFiles (buildinfo,concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups) returns the names of source
files from the build information.

The function requires the buildinfo, concatenatePaths, and replaceMatlabroot
arguments. You can use optional includeGroups and excludeGroups arguments.
These optional arguments let you include or exclude groups selectively from the source
files returned by the function.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector (' ') for includeGroups.

The makefile for the model build resolves file locations based on source paths and rules.
The build process does not require you to resolve the path of every file in the build
information. If you specify true for the concatenatePaths argument, the
getSourceFiles function returns the path for each file:

+ If a path was explicitly associated with the file when it was added.

+ If you called updateFilePathsAndExtensions to resolve file paths and extensions
before calling getSourceFiles.

Examples

2-77

2 Alphabetical List

Get Source Files from Build Information

Get the source paths and file names from the build information, myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles (myModelBuildInfo,

{'"testl.c' 'test2.c' 'driver.c'},'',
{'Tests' 'Tests' 'Drivers'});
srcfiles = getSourceFiles (myModelBuildInfo, false, false);

>> gsrcfiles
'testl.c' 'test2.c' 'driver.c'

Get Source Files with Include Group Argument

Get the names of source files in group tests from the build information,
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles (myModelBuildInfo, {'testl.c' 'test2.c'...
'driver.c'}, {'/proj/testl' '/proj/test2'...
'/drivers/src'}, {'tests', 'tests', 'drivers'});

incfiles = getSourceFiles (myModelBuildInfo, false,false, ...
'tests');

>> incfiles

incfiles =

'testl.c' 'test2.c'

Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

2-78

getSourceFiles

concatenatePaths — Choice of whether to concatenate paths and file names in return
false | true

Specify Function Action

true Concatenates and returns each file name with its corresponding
path.

false Returns only file names.

Example: true

replaceMatlabroot — Choice of whether to replace the $ (MATLAB ROOT) token with
absolute paths in return
false | true

Use the replaceMatlabroot argument to control whether the function includes the
MATLAB root definition in the output it returns.

Specify Function Action

true Replaces the token $ (MATLAB ROOT) with the absolute path for
your MATLAB installation folder.

false Does not replace the token $ (MATLAB ROOT) .

Example: true

includeGroups — Group names of source files to include in the return from the function
cell array

To use the includeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: '’

excludeGroups — Group names of source files to exclude from the return from the function
cell array

To use the excludeGroups argument, view available groups by using myGroups =
getGroups (buildInfo).

Example: "'

2-79

2 Alphabetical List

2-80

Output Arguments

srcfiles — Names of source files from the build information
cell array

The names of source files that you add with the addSourceFiles function. If you call
the packNGo function, the names include files that packNGo found and added while
packaging model code.

See Also

addSourceFiles | getIncludeFiles | getIncludePaths | getSourcePaths |
updateFilePathsAndExtensions

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

getSourcePaths

getSourcePaths

Get source paths from model build information

Syntax

srcpaths = getSourcePaths (buildinfo, replaceMatlabroot, includeGroups,
excludeGroups)

Description

srcpaths = getSourcePaths (buildinfo, replaceMatlabroot, includeGroups,
excludeGroups) returns the names of source file paths from the build information.

The function requires the buildinfo and replaceMatlabroot arguments. You can use
optional includeGroups and excludeGroups arguments. These optional arguments let
you include or exclude groups selectively from the source paths returned by the function.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector (' ') for includeGroups.

Examples

Get Source Paths from Build Information

Get the source paths from the build information, myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths (myModelBuildInfo, {'/proj/testl'
'/proj/test2' '/drivers/src'}, {'tests' 'tests'
'drivers'});

srcpaths = getSourcePaths (myModelBuildInfo, false);

2-81

2 Alphabetical List

2-82

srcpaths =

"\proj\testl' "\proj\test2' '\drivers\src'

Get Source Paths with Include Group Argument

Get the paths in group tests from the build information, myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths (myModelBuildInfo, {'/proj/testl’
'/proj/test2' '/drivers/src'}, {'tests' 'tests'
'drivers'});

srcpaths = getSourcePaths (myModelBuildInfo, true, 'tests');

>> srcpaths
srcpaths =

"\proj\testl' "\proj\test2'

Get Source Paths from Build Information

Get a source path from the build information, myModelBuildInfo. First, get the path
without replacing $ (MATLAB ROOT) with an absolute path. Then, get it with
replacement. Here, the MATLAB root folder is \\myserver\myworkspace\matlab.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths (myModelBuildInfo, fullfile(matlabroot,
'rtw', 'c', 'src'));

srcpaths = getSourcePaths (myModelBuildInfo, false);

>> srcpaths{:}

ans =

S (MATLAB ROOT)\rtw\c\src

>> srcpaths = getSourcePaths (myModelBuildInfo, true);

getSourcePaths

srcpaths{:}
ans =
\\myserver\myworkspace\matlab\rtw\c\src
Input Arguments

buildinfo — Name of the build information object returned by RTW.BuildInfo
object

replaceMatlabroot — Choice of whether to replace the $ (MATLAB ROOT) token with
absolute paths in return
false | true

Use the replaceMatlabroot argument to control whether the function includes the
MATLAB root definition in the output it returns.

Specify Function Action

true Replaces the token $ (MATLAB ROOT) with the absolute path for
your MATLAB installation folder.

false Does not replace the token $ (MATLAB ROOT) .

Example: true

includeGroups — Group hames of source paths to include in the return from the function
cell array

To use the includeGroups argument, view available groups with myGroups =
getGroups (buildInfo).

Example: '’

excludeGroups — Group names of source paths to exclude from the return from the

function
cell array

To use the excludeGroups argument, view available groups with myGroups =
getGroups (buildInfo).

Example: "'

2-83

2 Alphabetical List

Output Arguments

srcpaths — Paths of source files from the build information
cell array

See Also

addSourcePaths | getIncludeFiles | getIncludePaths | getSourceFiles

Topics

“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-84

model_initialize

model_initialize

Initialization entry-point function in generated code for Simulink model

Syntax

void model_initialize (void)

Calling Interfaces

The calling interface generated for this function differs depending on the value of the
model parameter Code interface packaging on page 9-30:

* C++ class (default for C++ language) — Generated function is encapsulated into a C
++ class method. Required model data is encapsulated into C++ class attributes.

* Nonreusable function (default for C language) — Generated function passes
(void).Model data structures are statically allocated, global, and accessed directly
in the model code.

* Reusable function — Generated function passes the real-time model data
structure, by reference, as an input argument. The real-time model data structure is
exported with the model.h header file.

For an ERT-based model, you can use the Pass root-level I/O as parameter to
control how root-level input and output arguments are passed to the function. They
can be included in the real-time model data structure, passed as individual
arguments, or passed as references to an input structure and an output structure.

For a GRT-based model, the generated model.c source file contains an allocation
function that dynamically allocates model data for each instance of the model. For an
ERT-based model, you can use the Use dynamic memory allocation for model
initialization parameter to control whether an allocation function is generated.

When set, you can restart code generated from the model from a single execution
instance. The sequence of function calls from the main.cis allocfcn,
model init,model term,allocfcn,model init,model term.

2-85

2 Alphabetical List

2-86

When cleared,

Note If you have an Embedded Coder license, for Nonreusable function code
interface packaging, you can use the Configure Model Functions button on the
Interface pane of the Configuration Parameters dialog box. For more information, see
“Control Generation of Function Prototypes” (Embedded Coder).

Description

The generated model initialize function contains initialization code for a Simulink
model and should be called once at the start of your application code.

Do not use the model initialize function to reset the real-time model data structure
(rtM).

See Also

model step Imodel_terminate

Topics
“Entry-Point Functions and Scheduling”
“Generate Code That Responds to Initialize, Reset, and Terminate Events”

Introduced before R2006a

model_step

model_step

Step routine entry point in generated code for Simulink model

Syntax

void model step (void)

void model stepN(void)

Calling Interfaces

The model step default function prototype varies depending on the “Treat each
discrete rate as a separate task” (Simulink) (EnableMultiTasking) parameter
specified for the model:

Parameter Value Function Prototype

Of

f void model step(void);

(single rate or multirate)

On

void model stepN (void);

(multirate) (N is a task identifier)

The calling interface generated for this function also differs depending on the value of the

mo

del parameter Code interface packaging on page 9-30:

C++ class (default for C++ language) — Generated function is encapsulated into a C
++ class method. Required model data is encapsulated into C++ class attributes.

Nonreusable function (default for C language) — Generated function passes
(void). Model data structures are statically allocated, global, and accessed directly
in the model code.

Reusable function — Generated function passes the real-time model data

structure, by reference, as an input argument. The real-time model data structure is
exported with the model.h header file.

For an ERT-based model, you can use the Pass root-level I/O as parameter to
control how root-level input and output arguments are passed to the function. They

2-87

2 Alphabetical List

2-88

can be included in the real-time model data structure, passed as individual
arguments, or passed as references to an input structure and an output structure.

Note If you have an Embedded Coder license:

* For Nonreusable function code interface packaging, you can use the Configure
Model Functions button on the Interface pane of the Configuration Parameters

dialog box. For more information, see “Control Generation of Function Prototypes”
(Embedded Coder).

* For C++ class code interface packaging, you can use the Configure C++ Class
Interface button and related controls on the Interface pane of the Configuration
Parameters dialog box. For more information, see “Control Generation of C++ Class
Interfaces” (Embedded Coder).

Description

The generated model step function contains the output and update code for the blocks
in a Simulink model. The model step function computes the current value of the blocks.
If logging is enabled, model step updates logging variables. If the model's stop time is
finite, model step signals the end of execution when the current time equals the stop
time.

Under the following conditions, model step does not check the current time against the
stop time:

* The model's stop time is set to inf.

* Logging is disabled.

* The Terminate function required option is not selected.
Therefore, if one or more of these conditions are true, the program runs indefinitely.

For a GRT or ERT-based model, the software generates a model step function when the
Single output/update function configuration option is selected (the default) in the
Configuration Parameters dialog box.

model step is designed to be called at interrupt level from rt OneStep, which is
assumed to be invoked as a timer ISR. rt_OneStep calls model step to execute

model_step

processing for one clock period of the model. For a description of how calls to
model step are generated and scheduled, see “rt_OneStep and Scheduling
Considerations” (Embedded Coder).

Note If the Single output/update function configuration option is not selected, the
software generates the following model entry point functions in place of model step:

* model output: Contains the output code for the blocks in the model
* model update: Contains the update code for the blocks in the model

See Also

model initialize | model terminate

Topics
“Entry-Point Functions and Scheduling”

Introduced before R2006a

2-89

2 Alphabetical List

2-90

model_terminate

Termination entry point in generated code for Simulink model

Syntax

void model terminate (void)

Calling Interfaces

The calling interface generated for this function also differs depending on the value of the
model parameter Code interface packaging on page 9-30:

* C++ class (default for C++ language) — Generated function is encapsulated into a C
++ class method. Required model data is encapsulated into C++ class attributes.

* Nonreusable function (default for C language) — Generated function passes
(void).Model data structures are statically allocated, global, and accessed directly
in the model code.

* Reusable function — Generated function passes the real-time model data
structure, by reference, as an input argument. The real-time model data structure is
exported with the model.h header file.

For an ERT-based model, you can use the Pass root-level I/O as parameter to
control how root-level input and output arguments are passed to the function. They
can be included in the real-time model data structure, passed as individual
arguments, or passed as references to an input structure and an output structure.

Description

The generated model terminate function contains the termination code for a Simulink
model and should be called as part of system shutdown.

When model terminate is called, blocks that have a terminate function execute their
terminate code. If logging is enabled, model terminate ends data logging.

model_terminate

The model terminate function should be called only once.

For an ERT-based model, the code generator produces the model terminate function
for a model when the Terminate function required configuration option is selected
(the default) in the Configuration Parameters dialog box. If your application runs
indefinitely, you do not need the model terminate function. To suppress the function,
clear the Terminate function required configuration option in the Configuration
Parameters dialog box.

See Also

model initialize | model step

Topics
“Entry-Point Functions and Scheduling”
“Generate Code That Responds to Initialize, Reset, and Terminate Events”

Introduced before R2006a

2-91

2 Alphabetical List

2-92

packNGo

Package model code in zip file for relocation

Syntax

packNGo (buildInfo, {propVals})

Description

packNGo (buildInfo, {propVals}) packages the code files in a compressed zip file so
you can relocate, unpack, and rebuild them in another development environment. The
list of {propVals} name-value pairs is optional.

The types of code files in the zip file include:

* Source files (for example, . c and . cpp files)
* Header files (for example, .h and . hpp files)
* MAT-file that contains the model build information object (.mat file)

* Nonbuild-related files (for example, .d11 files and . txt informational files) required
for a final executable

+ Build-generated binary files (for example, executable .exe file or dynamic link
library .d11).

The code generator includes the build-generated binary files (if present) in the zip file.
The ignoreFileMissing property does not apply to build-generated binary files.

You can use this function to relocate files. You can then recompile the files for a specific
target environment or rebuild them in a development environment in which MATLAB is
not installed.

By default, the function packages the files as a flat folder structure in a zip file named
model.zip. You can tailor the output by specifying property name and value pairs as
described.

After relocating the zip file, use a standard zip utility to unpack the compressed file.

packNGo

The packNGo function potentially can modify the build information passed in the first
packNGo argument. As part of packaging model code, packNGo can find additional files
from source and include paths recorded in the build information. When these files are
found, packNGo adds them to the build information.

Examples

Configure packNGo from Code Generation Ul

If you configure zip file packaging from the code generation UI, the code generator uses
packNGo to output a zip file during the build process.

1 Select Code Generation > Package code and artifacts. Optionally, provide a Zip
file name. To apply the changes, click OK.

2 Build the model. The code generator outputs the zip file at the end of the build
process.

Configure packNGo from set_param

If you configure zip file packaging with set param, the code generator uses packNGo to
output a zip file during the build process.

This example shows how to apply set param to configure zip file packaging for model
zingbit in the file zingbit.zip as a flat folder structure.

set param('zingbit', 'PostCodeGenCommand',
'packNGo (buildInfo); ') ;

Run packNGo from Command Window

After a model build, you can run packNGo from the Command Window. This example
shows how to apply packNGo for zip file packaging of the code files for model zingbit in
the file portzingbit.zip and maintain the relative file hierarchy.

1 Change folders to the model build folder.

2-93

2 Alphabetical List

2-94

2 Load the buildInfo object file that describes the model build.

3 Run packNGo with property settings for packType and fileName.
cd zingbit grt rtw;
load buildInfo.mat

packNGo (buildInfo, { 'packType', 'hierarchical',
'fileName', 'portzingbit'});

Input Arguments

buildInfo — Provides model build information for the zip file
buildInfo

During model builds, the code generator places the buildInfo.mat file in the build
folder. This file provides build information that packNGo uses to produce the zip file.

propVals — Property values as name-value pairs select options for producing the zip file
name-value pairs

See “Name-Value Pair Arguments” on page 2-94.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN, ValueN.

Example: { 'packType', 'flat', 'nestedZipFiles', true}

packType — Determines whether the primary zip file contains secondary zip files or folders
"flat' (default) | '"hierarchical'

If 'f1lat ', package the model code files in a zip file as a single, flat folder.

If 'Thierarchical', package the model code files hierarchically in a primary zip file.

Example: { 'packType', "flat'}

packNGo

nestedZipFiles — Determines whether the paths for files in the secondary zip files are
relative to the root folder of the primary zip file
true (default) | false

If true, create a primary zip file that contains three secondary zip files:

* mlrFiles.zip — Files in your matlabroot folder tree
* sDirFiles.zip — Files in and under your build folder

* otherFiles.zip — Required files not in the matlabroot or start folder trees

If false, create a primary zip file that contains folders, for example, your build folder
and matlabroot.

Example: { 'nestedZipFiles', true}

fileName — Specifies a file name for the primary zip file
"model.zip"' (default) | 'zipName'

By default, the function packages the files in a zip file named model.zip and places the
zip file in the build folder.

Example: {'fileName', "model.zip'}

minimalHeaders — Selects whether only to include the minimal header files
true (default) | false

If true, include only the minimal header files required to build the code in the zip file.

If false, include header files found on the include path in the zip file.

Example: { 'minimalHeaders', true}

includeReport — Selects whether to include the html folder for your code generation
report

false (default) | true

If false, do not include the html folder in the zip file.

If true, include the html folder in the zip file.

Example: { 'includeReport', false}

2-95

2 Alphabetical List

ignoreParseError — Instruct packNGo not to terminate on parse errors
false (default) | true

If false, error out on parse errors.

If true, do not terminate on parse errors.

Example: { 'ignoreParseError', false}

ignoreFileMissing — Instruct packNGo not to terminate if files are missing
false (default) | true

If false, terminate on missing file errors.

If t rue, do not terminate on missing files errors.

Example: { 'ignoreFileMissing', false}
See Also
Topics

“Customize Post-Code-Generation Build Processing”
“Relocate Code to Another Development Environment”
“packNGo Function Limitations”

Introduced in R2006b

2-96

rsimgetrtp

rsimgetrtp

Global model parameter structure

Syntax

parameter structure rsimgetrtp ('model")

Description

parameter structure = rsimgetrtp('model') forces a block update diagram
action for model, a model for which you are running rapid simulations, and returns the
global parameter structure for that model. The function includes tunable parameter
information in the parameter structure.

The model parameter structure contains the following fields:
Field Description

modelChecksum A four-element vector that encodes the structure. The
code generator uses the checksum to check whether the
structure has changed since the RSim executable was
generated. If you delete or add a block, and then generate
a new version of the structure, the new checksum will not
match the original checksum. The RSim executable
detects this incompatibility in model parameter
structures and exits to avoid returning incorrect
simulation results. If the structure changes, you must
regenerate code for the model.

parameters A structure that defines model global parameters.

The parameters substructure includes the following fields:

Field Description
dataTypeName Name of the parameter data type, for example, double
dataTypelD An internal data type identifier

2-97

2 Alphabetical List

2-98

Field
complex
dtTransIdx
values

structParamInfo

Description

Value 1 if parameter values are complex and 0 if real
Internal use only

Vector of parameter values

Information about structure and bus parameters in the
model

The structParamInfo substructure contains these fields:

Field
Identifier

ModelParam

BlockPath

CAPIIdx

Description
Name of the parameter

Value 1 if parameter is a model parameter and 0 if it is a
block parameter

Block path for a block parameter. This field is empty for
model parameters.

Internal use only

It is recommended that you do not modify fields in structParamInfo.

The function also includes an array of substructures map that represents tunable
parameter information with these fields:

Field
Identifier
Valuelndicies

Dimensions

Examples

Description
Parameter name
Vector of indices to parameter values

Vector indicating parameter dimensions

Return global parameter structure for model rtwdemo rsimtf to param struct:

rtwdemo rsimtf

param struct = rsimgetrtp('rtwdemo rsimtf')

param struct =

modelChecksum:

2.3064e+009]

parameters:

[1.7165e+009 3.0726e+009 2.6061e+009

[1x1 struct]

matlab:rtwdemo_rsimtf

rsimgetrtp

See Also

rsimsetrtpparam

Topics

“Create a MAT-File That Includes a Model Parameter Structure”
“Update Diagram and Run Simulation” (Simulink)

“Default parameter behavior” (Simulink)

“Block Creation” (Simulink)

“Tune Parameters”

Introduced in R2006a

2-99

2 Alphabetical List

2-100

rsimsetrtpparam

Set parameters of rtP model parameter structure

Syntax

rtP = rsimsetrtpparam(rtP,idx)

rtP = rsimsetrtpparam(rtP, 'paramName', paramValue)

rtP = rsimsetrtpparam(rtP,idx, 'paramName', paramValue)
Description

rtP = rsimsetrtpparam(rtP,idx) expands the rtP structure to have idx sets of
parameters. The rsimsetrtpparam utility defines the values of an existing rtP
parameter structure. The rtP structure matches the format of the structure returned by
rsimgetrtp ('modelName').

rtP = rsimsetrtpparam(rtP, 'paramName', paramValue) takes an rtP structure
with tunable parameter information and sets the values associated with 'paramName 'to
be paramValue if possible. There can be more than one name-value pair.

rtP = rsimsetrtpparam(rtP, idx, 'paramName', paramValue) takes an rtP
structure with tunable parameter information and sets the values associated with
'paramName' to be paramValue in the nth idx parameter set. There can be more than
one name-value pair. If the rtP structure does not have idx parameter sets, the first set
is copied and appended until there are idx parameter sets. Subsequently, the nth idxset
is changed.

Examples

Expand Parameter Sets

Expand the number of parameter sets in the rtp structure to 10.

rsimsetrtpparam

rtp = rsimsetrtpparam(rtp,10);

Add Parameter Sets

Add three parameter sets to the parameter structure rtp.

rtp = rsimsetrtpparam(rtp,idx, 'X1',iX1l, 'X2"',iX2, 'Num', iNum) ;

Input Arguments

rtP — A parameter structure that contains the sets of parameter names and their respective
values
parameter structure

idx — An index used to indicate the number of parameter sets in the rtP structure
index of parameter sets

paramValue — The value of the rtP parameter paramName
value of paramName

paramName — The name of the parameter set to add to the rtP structure
name of the parameter set

Output Arguments

rtP — An expanded rtP parameter structure that contains idx additional parameter sets
defined by the rsimsetrtpparam function call
expanded rtP parameter structure

See Also

rsimgetrtp

Topics

“Create a MAT-File That Includes a Model Parameter Structure”
“Update Diagram and Run Simulation” (Simulink)

“Default parameter behavior” (Simulink)

2-101

2 Alphabetical List

“Block Creation” (Simulink)
“Tune Parameters”

Introduced in R2009b

2-102

rtw_precompile_libs

rtw_precompile_libs

Rebuild precompiled libraries within model without building model

Syntax

rtw _precompile libs (model,build spec)

Description

rtw precompile libs (model,build spec) builds libraries within model, according
to the build spec field values, and places the libraries in a precompiled folder. Model
builds that use the template makefile approach support the rtw precompile libs
function. Toolchain approach model builds do not support the rtw precompile libs
function.

Examples

Precompile Libraries for Model

Build the libraries in my model without building my model.

% Specify the library suffix
if isunix

suffix = ' std.a';
elseif ismac

suffix = ' std.a';
else

suffix = ' vcx64d.1lib';
end

open system(my model) ;
set param(my model, 'TargetLibSuffix',suffix);

% Set the precompiled library folder
set param(my model, 'TargetPreCompLibLocation',fullfile(pwd,'lib"));

2-103

2 Alphabetical List

% Define a build specification that specifies

% the location of the files to compile.

my build spec = [];

my build spec.rtwmakecfgDirs = {fullfile(pwd, 'src')};

% Build the libraries in 'my model’
rtw precompile libs(my model,my build spec);

Input Arguments

model — Model object or name for which to build libraries
object | 'modelName'

Name of the model containing the libraries that you want to build.

build_spec — Structure with field values that provides the build specification
struct

Structure with fields that define a build specification. Fields except rtwmakecfgDirs
are optional.

Field Values in build_spec

Specify the structure field values of the build spec.

Exanuﬂe:build spec.rtwmakecfgDirs = {fullfile(pwd, 'src')};

rtwmakecfgDirs — Fully qualified paths to the folders containing rtwmakec£g files for
libraries to precompile
array of paths

Uses the Name and Location elements of makeInfo.library, as returned by the
rtwmakecfg function, to specify name and location of precompiled libraries. If you use
the TargetPreCompLibLocation parameter to specify the library folder, it overrides
the makeInfo.library.Location setting.

The specified model must contain S-function blocks that use precompiled libraries, which
the rtwmakecfq files specify. The makefile that the build approach generates contains
the library rules only if the conversion requires the libraries.

2-104

rtw_precompile_libs

Example: build spec.rtwmakecfgDirs = {fullfile(pwd, 'src')};

libsuffix — Suffix, including the file type extension, to append to the name of each library
(for example, std.aor_vcx64.1ib)
character vector

The suffix must include a period (.). Set the suffix by using either this field or the
TargetLibSuffix parameter. If you specify a suffix with both mechanisms, the
TargetLibSuffix setting overrides the setting of this field.

Example: build spec.libSuffix = ' vcx64.1ib';

intOnlyBuild — Selects library optimization
'false' (default) | "true’

When set to true, indicates that the function optimizes the libraries so that they compile
from integer code only. Applies to ERT-based targets only.

Example: build spec.intOnlyBuild = 'false';

makeOpts — Specifies an option for rtwMake

character vector

Specifies an option to include in the rtwMake command line.

Example: build spec.makeOpts = '';

addLibs — Specifies libraries to build
cell array of structures

This cell array of structures specifies the libraries to build that an rtwmakecfg function
does not specify. Define each structure with two fields that are character arrays:

* libName — Name of the library without a suffix

* libLoc — Location for the precompiled library

The build approach (toolchain approach or template makefile approach) lets you specify
other libraries and how to build them. Use this field if you must precompile libraries.

Example: build spec.addLibs = 'libs list';

2-105

2 Alphabetical List

See Also

Topics

“Precompile S-Function Libraries”

“Recompile Precompiled Libraries”

“Choose Build Approach and Configure Build Process”

“Use rtwmakecfg.m API to Customize Generated Makefiles”

Introduced in R2009b

2-106

rtwbuild

rtwbuild

Build generated code from a model

Syntax

rtwbuild (model)
rtwbuild (model, name, value)

rtwbuild (subsystem)

rtwbuild (subsystem, 'Mode', 'ExportFunctionCalls"')
blockHandle = rtwbuild(subsystem, 'Mode', 'ExportFunctionCalls")
rtwbuild (subsystem, 'Mode', 'ExportFunctionCalls,
'ExportFunctionInitializeFunctionName', fcnname)

Description

rtwbuild (model) generates code from model based on current model configuration
parameter settings. If model is not already loaded into the MATLAB environment,
rtwbuild loads it before generating code.

If you clear the Generate code only model configuration parameter, the function
generates code and builds an executable image.

To reduce code generation time, when rebuilding a model, rtwbuild provides
incremental model build. The code generator rebuilds a model or submodels only when
they have changed since the most recent model build. To force a top-model build, see the
'ForceTopModelBuild' argument.

Do not use rtwbuild, rtwrebuild, or slbuild commands with parallel language
features (Parallel Computing Toolbox) (for example, within a parfor or spmd loop). For

information about parallel builds of referenced models, see “Reduce Build Time for
Referenced Models”.

rtwbuild (model, name,value) uses additional options specified by one or more
name, value pair arguments.

2-107

2 Alphabetical List

2-108

rtwbuild (subsystem) generates code from subsystem based on current model
configuration parameter settings. Before initiating the build, open (or load) the parent
model.

If you clear the Generate code only model configuration parameter, the function
generates code and builds an executable image.

rtwbuild (subsystem, 'Mode', 'ExportFunctionCalls"') generates code from
subsystem that includes function calls that you can export to external application code
if you have Embedded Coder.

blockHandle = rtwbuild(subsystem, '"Mode', 'ExportFunctionCalls"') returns
the handle to a SIL block created for code generated from the specified subsystem if
Configuration Parameters > Code Generation > Verification > Advanced
parameters > Create block is set to STIL and if you have Embedded Coder. You can
then use the SIL block for SIL verification testing.

rtwbuild (subsystem, 'Mode', 'ExportFunctionCalls,
'ExportFunctionInitializeFunctionName', fcnname) names the exported
initialization function, specified as a character vector, for the specified subsystem.

Examples

Generate Code and Build Executable Image for Model
Generate C code for model rtwdemo rtwintro.
rtwbuild ('rtwdemo rtwintro')

For the GRT system target file, the code generator produces the following code files and
places them in folders rtwdemo rtwintro grt rtwand slprj/grt/ sharedutils.

rtwbuild

Model Files Shared Files Interface Files Other Files
rtwdemo rtwintro.c rtGetInf.c rtmodel.h rt logging.c
rtwdemo rtwintro.h rtGetInf.h

rtwdemo rtwintro priva
te.h

rtwdemo rtwintrotypes.
h

rtGetNaN.c
rtGetNaN.h

rt nonfinite.c

rt nonfinite.h
rtwtypes.h
multiword types.h

builtin typeid types.h

If the following model configuration parameters settings apply, the code generator

produces additional results.

Parameter Setting

Results

pane is cleared

Code Generation > Generate code only

Executable image
rtwdemo rtwintro.exe

Code Generation > Report > Create
code generation report is selected

Report that provides information and links
to generated code files, subsystem and code
interface reports, entry-point functions,
inports, outports, interface parameters,
and data stores

Force Top Model Build

Generate code and build an executable image for rtwdemo mdlreftop, which refers to
model rtwdemo mdlrefbot, regardless of model checksums and parameter settings.

rtwbuild('rtwdemo mdlreftop',
'ForceTopModelBuild', true)

2-109

2 Alphabetical List

Display Error Messages in Diagnostic Viewer

Introduce an error to model rtwdemo mdlreftop and save the model as

rtwdemo mdlreftop witherr. Display build error messages in the Diagnostic Viewer
and in the Command Window while generating code and building an executable image
for model rtwdemo mdlreftop witherr

rtwbuild('rtwdemo mdlreftop witherr',
'OkayToPushNags', true)

Generate Code and Build Executable Image for Subsystem

Generate C code for subsystem Amplifier in model rtwdemo rtwintro.

rtwbuild('rtwdemo rtwintro/Amplifier")

For the GRT target, the code generator produces the following code files and places them
in folders Amplifier grt rtwand slprj/grt/ sharedutils.

Model Files Shared Files Interface Files Other Files
Amplifier.c rtGetInf.c rtmodel.h rt logging.c
Amplifier.h rtGetInf.h

Amplifier private.h rtGetNaN.c

Amplifier types.h rtGetNaN.h

rt nonfinite.c
rt nonfinite.h
rtwtypes.h

multiword types.h

builtin typeid types.h

2-110

If you apply the parameter settings listed in the table, the code generator produces the
results listed.

rtwbuild

Parameter Setting Results

Code Generation > Generate code only |Executable image Amplifier.exe
pane is cleared

Code Generation > Report > Create Report that provides information and links
code generation report is selected to generated code files, subsystem and code
interface reports, entry-point functions,
inports, outports, interface parameters,
and data stores

Build Subsystem for Exporting Code to External Application

To export the image to external application code, build an executable image from a
function-call subsystem.

rtwdemo_exporting functions
rtwbuild ('rtwdemo exporting functions/rtwdemo subsystem', 'Mode', 'ExportFunctionCalls"')

The executable image rtwdemo subsystem.exe appears in your working folder.

Create SIL Block for Verification

From a function-call subsystem, create a SIL block that you can use to test the code
generated from a model.

Open subsystem rtwdemo subsystem in model rtwdemo exporting functions and
set Configuration Parameters > Code Generation > Verification > Advanced
parameters > Create block to STI.

Create the SIL block.

mysilblockhandle = rtwbuild('rtwdemo exporting functions/rtwdemo subsystem', ...
'Mode', "ExportFunctionCalls")

The code generator produces a SIL block for the generated subsystem code. You can add
the block to an environment or test harness model that supplies test vectors or stimulus
input. You can then run simulations that perform SIL tests and verify that the generated
code in the SIL block produces the same result as the original subsystem.

2-111

2 Alphabetical List

Name Exported Initialization Function

Name the initialization function generated when building an executable image from a
function-call subsystem.
rtwdemo exporting functions

rtwbuild ('rtwdemo exporting functions/rtwdemo subsystem', ...
'Mode', '"ExportFunctionCalls', 'ExportFunctionInitializeFunctionName', 'subsysinit')

The initialization function name subsysinit appears in
rtwdemo subsystem ert rtw/ert main.c.

Input Arguments

model — Model object or name for which to generate code or build an executable image
object | 'modelName'

Model for which to generate code or build an executable image, specified as an object or a
character vector representing the model name.
Example: 'rtwdemo exporting functions'

subsystem — Subsystem name for which to generate code or build executable image
'subsystemName'

Subsystem for which to generate code or build an executable image, specified as a
character vector representing the subsystem name or the full block path.

Example: ! rtwdemo exporting functions/rtwdemo subsystem'

name,value — Name-value pairs select options for the build process
name-value pairs

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN, ValueN.

Example: rtwbuild (" rtwdemo mdlreftop', 'ForceTopModelBuild', true)

2-112

rtwbuild

ForceTopModelBuild — Force regeneration of top model code
false (default) | true

Force regeneration of top model code, specified as true or false.
Action Specify

Force the code generator to regenerate code for the top model of a true
system that includes referenced models

Specify that the code generator determine whether to regenerate top |false
model code based on model and model parameter changes

Consider forcing regeneration of code for a top model if you change items associated with
external or custom code, such as code for a custom target. For example, set
ForceTopModelBuild to true if you change:

* TLC code

+ S-function source code, including rtwmakecfg.m files

+ Integrated custom code

Alternatively, you can force regeneration of top model code by deleting folders in the code
generation folder (Simulink), such as s1lprj or the generated model code folder.

OkayToPushNags — Display build error messages in Diagnostic Viewer
false (default) | true

Display error messages from the build in Diagnostic Viewer, specified as true or false.
Action Specify

Display build error messages in the Diagnostic Viewer and in the true
Command Window

Display build error messages in the Command Window only false

generateCodeOnly — Specify code generation versus an executable build
false (default) | true

Specify code generation versus an executable build, specified as true or false.
Action Specify

Specify code generation (same operation as value 'on' for true
GenCodeOnly parameter)

2-113

2 Alphabetical List

2-114

Action Specify

Specify executable build (same operation as value 'off' for false
GenCodeOnly parameter)

Mode — (for subsystem builds only) Direct code generator to export function calls
"ExportFunctionCalls"' (default)

If you have Embedded Coder, generates code from subsystem that includes function
calls that you can export to external application code.

Output Arguments

blockHandle — Handle to SIL block created for generated subsystem code
handle

Handle to SIL block created for generated subsystem code. Returned only if both of the
following conditions apply:

* You are licensed to use Embedded Coder software.

+ Configuration Parameters > Code Generation > Verification > Advanced
parametersCreate block is set to SIL.

Tips
You can initiate code generation and the build process by:

* Pressing Ctrl+B.
+ Selecting Code > C/C++ Code > Build Model.
+ Invoking the slbuild command from the MATLAB command line.

See Also

rtwrebuild | slbuild

Topics

“Build and Run a Program”

rtwbuild

“Choose Build Approach and Configure Build Process”

Control Regeneration of Top Model Code

“Generate Component Source Code for Export to External Code Base” (Embedded Coder)
“Software-in-the-Loop Simulation” (Embedded Coder)

Introduced in R2009a

2-115

2 Alphabetical List

2-116

RTW.getBuildDir

Get build folder information from model build information

Syntax

RTW.getBuildDir (model)
folderStruct = RTW.getBuildDir (model)

Description

RTW.getBuildDir (model) displays build folder information for model.

If the model is closed, the function opens and then closes the model, leaving it in its
original state. If the model is large and closed, the RTW.getBuildDir function can take
longer to execute.

folderStruct = RTW.getBuildDir (model) returns a structure containing build
folder information.

You can use this function in automated scripts to determine the build folder in which the
generated code for a model is placed.

This function can return build folder information for protected models.

Examples

Display Build Folder Information

Display build folder information for the model 'sldemo fuelsys'.

>> RTW.getBuildDir ('sldemo fuelsys')

RTW.getBuildDir

BuildDirectory: 'C:\work\modelref\sldemo fuelsys ert rtw'
CacheFolder: 'C:\work\modelref'
CodeGenFolder: 'C:\work\modelref'
RelativeBuildDir: 'sldemo fuelsys ert rtw'
BuildDirSuffix: ' ert rtw'
ModelRefRelativeRootSimDir: 'slprj\sim'
ModelRefRelativeRootTgtDir: 'slprj\ert'
ModelRefRelativeBuildDir: 'slprj\ert\sldemo fuelsys'
ModelRefRelativeSimDir: 'slprj\sim\sldemo fuelsys'
ModelRefRelativeHdlDir: 'slprj\hdl\sldemo fuelsys'
ModelRefDirSuffix: ''
SharedUtilsSimDir: 'slprj\sim\ sharedutils'
SharedUtilsTgtDir: 'slprj\ert\ sharedutils'

Get Build Folder Information

Return a structure my folderStruct that contains build folder information for the
model 'MyModel'.

>> my folderStruct = RTW.getBuildDir ('MyModel"')

my folderStruct =

BuildDirectory: 'H:\MyModel ert rtw'
CacheFolder: 'H:\'
CodeGenFolder: 'H:\'
RelativeBuildDir: 'MyModel ert rtw'
BuildDirSuffix: ' ert rtw'
ModelRefRelativeRootSimDir: 'slprj\sim'
ModelRefRelativeRootTgtDir: 'slprj\ert'
ModelRefRelativeBuildDir: 'slprj\ert\MyModel'
ModelRefRelativeSimDir: 'slprj\sim\MyModel'
ModelRefRelativeHd1lDir: 'slprj\hdl\MyModel'
ModelRefDirSuffix: ''

2-117

2 Alphabetical List

SharedUtilsSimDir: 'slprj\sim\ sharedutils'
SharedUtilsTgtDir: 'slprj\ert\ sharedutils'
Input Arguments

model — Model object or name for which to get the build folders
object | 'modelName'

Model for which to get the build folder, specified as an object or a character vector
representing the model name.

Example: 'sldemo fuelsys'

Output Arguments

folderStruct — Structure with field values that provide build folder information
struct

Structure with fields that provides build folder information.

Example: folderstruct = RTW.getBuildDir('MyModel')

BuildDirectory — Character vector specifying fully qualified path to build folder for model
character vector

CacheFolder — Character vector specifying root folder in which to place model build
artifacts used for simulation
character vector

CodeGenFolder — Character vector specifying root folder in which to place code generation
files
character vector

RelativeBuildDir — Character vector specifying build folder relative to the current
working folder (pwd)
Character vector

BuildDirSuffix — Character vector specifying suffix appended to model name to create
build folder

character vector

2-118

RTW.getBuildDir

ModelRefRelativeRootSimDir — Character vector specifying the relative root folder for
the model reference target simulation folder
chamcter vector

ModelRefRelativeRootTgtDir — Character vector specifying the relative root folder for
the model reference target build folder
charactel‘ vector

ModelRefRelativeBuildDir — Character vector specifying model reference target build
folder relative to current working folder (pwd)
character vector

ModelRefRelativeSimDir — Character vector specifying model reference target
simulation folder relative to current working folder (pwd)
character vector

ModelRefRelativeHd1Dir — Character vector specifying model reference target HDL
folder relative to current working folder (pwd)
character vector

ModelRefDirSuffix — Character vector specifying suffix appended to system target file
name to create model reference build folder
character vector

SharedUtilsSimDir — Character vector specifying the shared utility folder for simulation
character vector

SharedUtilsTgtDir — Character vector specifying the shared utility folder for code
generation
character vector

See Also
rtwbuild

Topics
“Working Folder”
“Manage Build Process Folders”

2-119

2 Alphabetical List

Introduced in R2008b

2-120

rtwrebuild

rtwrebuild

Rebuild generated code from model

Syntax

rtwrebuild()
rtwrebuild (model)

rtwrebuild (path)

Description

rtwrebuild () assumes that the current working folder is the build folder of the model
(not the model location) and invokes the makefile in the build folder. If the current
working folder is not the build folder, the function exits with an error.

rtwrebuild invokes the makefile generated during the previous build to recompile files
you modified since that build. Operation of this function depends on the current working
folder, not the current loaded model. If your model includes referenced models,
rtwrebuild invokes the makefile for referenced model code recursively before
recompiling the top model.

Do not use rtwbuild, rtwrebuild, or slbuild commands with parallel language
features (Parallel Computing Toolbox) (for example, within a parfor or spmd loop). For

information about parallel builds of referenced models, see “Reduce Build Time for
Referenced Models”.

rtwrebuild (model) assumes that the current working folder is one level above the
build folder and invokes the makefile in the build folder. If the current working folder
(pwd) 1s not one level above the build folder, the function exits with an error.

rtwrebuild (path) finds the build folder indicated with the path argument and
invokes the makefile in the build folder. The path argument syntax lets the function

operate without regard to the relationship between the current working folder and the
build folder of the model.

2-121

2 Alphabetical List

2-122

Examples

Rebuild Code from Build Folder

Invoke the makefile and recompile code when the current working folder is the build
folder. For example,

+ If the model name is mymodel
+ And, if the model build was initiated in the C: \work folder
* And, if the system target is GRT

Invoke the previously generated makefile in the current working folder (build folder) C:
\work\mymodel grt rtw.

rtwrebuild ()

Rebuild Code from Parent Folder of Build Folder

When the current working folder is one level above the build folder, invoke the makefile
and recompile code.

rtwrebuild ('mymodel")

Rebuild Code from Any Folder

Invoke the makefile and recompile code from any current folder by specifying a path to
the model build folder, C: \work\mymodel grt rtw.

rtwrebuild (fullfile('C: "', "work', 'mymodel grt rtw'))

Input Arguments

model — Model object or name for which to regenerate code or rebuild an executable image
object | 'modelName'

rtwrebuild

Model for which to regenerate code or rebuild an executable image, specified as an object
or a character vector representing the model name.

Example: 'rtwdemo exporting functions'

path — Model path object or fully qualified path to the build folder for the model for which to
regenerate code or rebuild an executable image
object | modelPath

Example: fullfile('C:', '"work', 'mymodel grt rtw')

See Also
rtwbuild | slbuild

Topics
“Rebuild a Model”

Introduced in R2009a

2-123

2 Alphabetical List

2-124

rtwreport

Create generated code report for model with Simulink Report Generator

Syntax

rtwreport (model)
rtwreport (model, folder)

Description

rtwreport (model) creates a report of code generation information for a model. Before
creating the report, the function loads the model and generates code. The code generator
names the report codegen.html. It places the file in your current folder. The report
includes:

* Snapshots of the model, including subsystems.
+ Block execution order list.

+ Code generation summary with a list of generated code files, configuration settings, a
subsystem map, and a traceability report.

+ Full listings of generated code that reside in the build folder.

rtwreport (model, folder) specifies the build folder, model target rtw. The build
folder (folder) and slprj folder must reside in the code generation folder (Simulink). If
the software cannot find the folder, an error occurs and code is not generated.

Examples

Create Report Documenting Generated Code

Create a report for model rtwdemo secondOrderSystem:

rtwreport ('rtwdemo secondOrderSystem') ;

rtwreport

Create Report Specifying Build Folder

Create a report for model rtwdemo secondOrderSystem using build folder,
rtwdemo secondOrderSystem grt rtw:

rtwreport ('rtwdemo secondOrderSystem',
'rtwdemo secondOrderSystem grt rtw');

Input Arguments

model — Model nhame

character vector

Model name for which the report is generated, specified as a character vector.
Example: 'rtwdemo secondOrderSystem'

Data Types: char

folder — Build folder name
character vector

Build folder name, specified as a character vector. When you have multiple build folders,
include a folder name. For example, if you have multiple builds using different targets,
such as GRT and ERT.

Exanuﬂe:'rtwdemo_secondOrderSystem_qrt_rtw'

Data Types: char

See Also

Topics

“Document Generated Code with Simulink Report Generator”
Import Generated Code

“Working with the Report Explorer” (Simulink Report Generator)
Code Generation Summary

2-125

2 Alphabetical List

Introduced in R2007a

2-126

rtwtrace

rtwtrace

Trace a block to generated code in HTML code generation report

Syntax

rtwtrace ('blockpath')
rtwtrace ('blockpath', 'hdl"')
rtwtrace ('blockpath', 'plc')

Description

rtwtrace ('"blockpath') opens an HTML code generation report that displays
contents of the source code file, and highlights the line of code corresponding to the
specified block.

Before calling rtwtrace, make sure:

* You select an ERT-based model and enabled model to code navigation.

To do this, on the Configuration Parameters dialog box, select the Model-to-code
parameter.

* You generate code for the model using the code generator.

* You have the build folder under the current working folder; otherwise, rtwtrace may
produce an error.

rtwtrace ("blockpath', 'hdl') opens an HTML code generation report for HDL
Coder™ that displays contents of the source code file, and highlights the line of code
corresponding to the specified block.

rtwtrace ('"blockpath', 'plc') opens an HTML code generation report for Simulink

PLC Coder™ that displays contents of the source code file, and highlights the line of code
corresponding to the specified block.

2-127

2 Alphabetical List

Examples

Display Generated Code for a Block

Display the generated code for block Out1l in the model rtwdemo comments in HTML
code generation report:

rtwtrace ('rtwdemo comments /Ooutl!')

Code Generation Report - O hed
€ ma[14 ¢ vamnam

Highlight code for block: << = lof7 = > Remove Highlights

Contents '<Root>/0utl’
a8 /* Gateway: Stateflow */ A

Summary

189 /¥ During: Stateflow */
Subsystem Report 118 if (rtDWork.bitsForTID@.is_active cl_rtwdemo_comments == @U) {

1 /* Entry: Stateflow */
Code Interface Report 2 rtDWork.bitsForTIDB.is_active_cl_rtwdemo_comments = 1U;
Traceability Report 3
) ! 4 /* Entry Internal: Stateflow */
Static Code Metrics Report 15 /* Transition: '<S2s:9' */
16 rtDWork.bitsForTID@.is_cl_rtwdemo_comments = IN_First;

Code Replacements Report =2

8 /* Outport: '<Root>/Qutl’ */
Generated Code 9 /* Entry 'First': '¢52>:2' ¥/
-1 Main file 128 rtY¥.Outl = 1;
) 121 } else if (rtDWork.bitsForTIDB.is_cl rtwdemo_comments == IN_First) {
ert_main.c 122 /* During 'First': '¢§2>:2" */
-1 Model files 123 /:‘ The state is activated at initialization. */
124 /* Transition: '¢§2>:18" */
rtwdemo_comments.c (6) 125 /* After initialize */
rtwdemo_comments.h (1) 126 /* After initialization, transfer to the normal state. */
127 rtDWork.bitsForTID@.is_cl_rtwdemo_comments = IN_Normal;
‘-1 Shared files 128
rtwivpes.h 129 /.‘ Entry Internal 'Normal': "¢S2>:1' */
rwiypesn 138 /* Transition: '¢52>:4" */
131 if (is_data_xor) {
132 /* Outport: "<Root»/0utl’ */
133 /* Transition: '¢S2>:5' */
134 /* This transition is taken when exactly one input is enabled. */
35 /* Transition: '<§2>:6' */ &

2-128

matlab:rtwdemo_comments

rtwtrace

Input Arguments

blockpath — block path
character vector (default)

blockpath is a character vector enclosed in quotes specifying the full Simulink block
path, for example, 'model name/block name'’.

Example: 'out1’

Data Types: char

hdl — HDL Coder

character vector

hdl is a character vector enclosed in quotes specifying the code report is from HDL
Coder.

Example: 'outl’

Data Types: char

plc — PLC Coder

character vector

plc is a character vector enclosed in quotes specifying the code report is from Simulink
PLC Coder.

Example: 'outl’

Data Types: char

Alternatives

To trace from a block in the model diagram, right-click a block and select C/C++ Code >
Navigate to C/C++ Code.

2-129

2 Alphabetical List

See Also

Topics
“Trace Model Objects to Generated Code” (Embedded Coder)
“Model-to-code” on page 10-8

Introduced in R2009b

2-130

setTargetProvidesMain

setTargetProvidesMain

Disable inclusion of code generator provided (generated or static) main. c source file
during model build

Syntax

setTargetProvidesMain (buildinfo,providesmain)

Description

setTargetProvidesMain (buildinfo,providesmain) disables the code generator
from including a sample main. c source file.

To replace the sample main. c file from the code generator with a custom main. c file,
call the setTargetProvidesMain function during the 'after tlc' case in the
ert make rtw hook.mor grt make rtw hook.mfile.

Examples

Workflow for setTargetProvidesMain
To apply the setTargetProvidesMain function:

Add buildInfo to the arguments in the function call.

function ert make rtw hook(hookMethod,modelName, rtwroot,
templateMakefile,buildOpts,buildArgs,buildInfo)

Add the setTargetProvidesMain function to the 'after tlc' stage.

case 'after tlc'
% Called just after to invoking TLC Compiler (actual code generation.)
% Valid arguments at this stage are hookMethod, modelName, and

% buildArgs, buildInfo

2-131

2 Alphabetical List

o

setTargetProvidesMain (buildInfo, true);

Use the Configuration Parameters > Code Generation > Custom Code > Source
Files field to add your custom main. c to the model. When you indicate that the target
provides main.c, the model requires this file to build without errors.

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

providesmain — Logical value that specifies whether the code generator includes the
target provided main. c file
false (default) | true

The providesmain argument specifies whether the code generator includes a (generated
or static) main. c source file.

+ false — The code generator includes a sample main.ob7j object file.

* true — The target provides the main. c source file.

See Also

addSourceFiles | addSourcePaths

Topics
“Customize Build Process with STF _make_rtw_hook File”

Introduced in R2009a

2-132

Simulink.fileGenControl

Simulink.fileGenControl

Specify root folders for files generated by diagram updates and model builds

Syntax

cfg = Simulink.fileGenControl ('getConfig')
Simulink.fileGenControl (Action, Name,Value)

Description

cfg = Simulink.fileGenControl ('getConfig') returns a handle to an instance of
the Simulink.FileGenConfig object, which contains the current values of these file
generation control parameters:

* CacheFolder — Specifies the root folder for model build artifacts that are used for
simulation, including Simulink® cache files.

* CodeGenFolder — Specifies the root folder for code generation files.

* CodeGenFolderStructure — Controls the folder structure within the code

generation folder.

To get or set the parameter values, use the Simulink.FileGenConfig object.

These Simulink preferences determine the initial parameter values for the MATLAB
session:

* Simulation cache folder (Simulink) — CacheFolder

* Code generation folder (Simulink) — CodeGenFolder

* Code generation folder structure (Simulink) — CodeGenFolderStructure
Simulink.fileGenControl (Action,Name, Value) performs an action that uses the

file generation control parameters of the current MATLAB session. Specify additional
options with one or more name, value pair arguments.

2-133

2 Alphabetical List

Examples

Get File Generation Control Parameter Values

To obtain the file generation control parameter values for the current MATLAB session,
use getConfig.

cfg = Simulink.fileGenControl ('getConfig');

myCacheFolder = cfg.CacheFolder;
myCodeGenFolder = cfg.CodeGenFolder;
myCodeGenFolderStructure = cfg.CodeGenFolderStructure;

Set File Generation Control Parameters by Using Simulink.FileGenConfig Object

To set the file generation control parameter values for the current MATLAB session, use
the setConfig action. First, set values in an instance of the
Simulink.FileGenConfig object. Then, pass the object instance. This example
assumes that your system has aNonDefaultCacheFolder and
aNonDefaultCodeGenFolder folders.

% Get the current configuration
cfg = Simulink.fileGenControl ('getConfig');

Change the parameters to non-default locations

for the cache and code generation folders

cfg.CacheFolder = fullfile('C:', "aNonDefaultCacheFolder'");
cfg.CodeGenFolder = fullfile('C:', "aNonDefaultCodeGenFolder");
cfg.CodeGenFolderStructure = 'TargetEnvironmentSubfolder';

)
)

Simulink.fileGenControl ('setConfig', 'config', cfg);

Set File Generation Control Parameters Directly

You can set file generation control parameter values for the current MATLAB session
without creating an instance of the Simulink.FileGenConfig object. This example
assumes that your system has aNonDefaultCacheFolder and
aNonDefaultCodeGenFolder folders.

2-134

Simulink.fileGenControl

myCacheFolder = fullfile('C:', "aNonDefaultCacheFolder');
myCodeGenFolder = fullfile('C:', "aNonDefaultCodeGenFolder");

Simulink.fileGenControl ('set', 'CacheFolder', myCacheFolder,
'CodeGenFolder', myCodeGenFolder,
'CodeGenFolderStructure',
Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder) ;

If you do not want to generate code for different target environments in separate folders,
for 'CodeGenFolderStructure’, specify the value
Simulink.filegen.CodeGenFolderStructure.ModelSpecific.

Reset File Generation Control Parameters

You can reset the file generation control parameters to values from Simulink
preferences.

Simulink.fileGenControl ('reset');

Create Simulation Cache and Code Generation Folders

To create file generation folders, use the set action with the 'createDir' option. You
can keep previous file generation folders on the MATLAB path through the
'keepPreviousPath' option.

o

myCacheFolder = fullfile('C:', "aNonDefaultCacheFolder'");
myCodeGenFolder = fullfile('C:', "aNonDefaultCodeGenFolder");

Simulink.fileGenControl ('set',
'CacheFolder',myCacheFolder,
'CodeGenFolder',myCodeGenFolder,
'keepPreviousPath', true,
'createDir', true);

Input Arguments

Action — Specify action
'reset' | 'set' | 'setConfig'

2-135

2 Alphabetical List

Specify an action that uses the file generation control parameters of the current
MATLAB session:

+ 'reset' — Reset file generation control parameters to values from Simulink
preferences.

* 'set' — Set file generation control parameters for the current MATLAB session by
directly passing values.

* 'setConfig' — Set file generation control parameters for the current MATLAB
session by using an instance of a Simulink.FileGenConfig object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN, ValueN.

Example: Simulink.fileGenControl (Action, Name, Value);

config — Specify instance of Simulink.FileGenConfig
object handle

Specify the Simulink.FileGenConfig object instance containing file generation control
parameters that you want to set.

Option for setConfig.

Example: Simulink.fileGenControl ('setConfig', 'config', cfg);

CacheFolder — Specify simulation cache folder
character vector

Specify a simulation cache folder path value for the CacheFolder parameter.

Option for set.

Example: Simulink.fileGenControl ('set', 'CacheFolder', myCacheFolder) ;

CodeGenFolder — Specify code generation folder
character vector

2-136

Simulink.fileGenControl

Specify a code generation folder path value for the CodeGenFolder parameter. You can
specify an absolute path or a path relative to build folders. For example:

* 'C:\Work\mymodelsimcache' and '/mywork/mymodelgencode’' specify absolute
paths.

* 'mymodelsimcache’ is a path relative to the current working folder (pwd). The
software converts a relative path to a fully qualified path at the time the
CacheFolder or CodeGenFolder parameter is set. For example, if pwd is '/
mywork', the result is ' /mywork/mymodelsimcache’.

+ '../test/mymodelgencode' is a path relative to pwd. If pwd is ' /mywork', the
result is ' /test/mymodelgencode’.

Option for set.

Example: Simulink.fileGenControl ('set',
'CodeGenFolder', myCodeGenFolder) ;

CodeGenFolderStructure — Specify generated code folder structure
Simulink.filegen.CodeGenFolderStructure.ModelSpecific (default) |
Simulink.filegen.CodeGenFolderStructure. Target EnvironmentSubfolder

Specify the layout of subfolders within the generated code folder:

* Simulink.filegen.CodeGenFolderStructure.ModelSpecific (default) — Place
generated code in subfolders within a model-specific folder.

* Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder
— If models are configured for different target environments, place generated code for
each model in a separate subfolder. The name of the subfolder corresponds to the
target environment.

Option for set.

Example: Simulink.fileGenControl ('set', 'CacheFolder',

myCacheFolder, ... 'CodeGenFolder', myCodeGenFolder,
'CodeGenFolderStructure',
Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder) ;

keepPreviousPath — Keep previous folder paths on MATLAB path
false (default) | true

2-137

2 Alphabetical List

2-138

Specifiy whether to keep the previous values of CacheFolder and CodeGenFolder on
the MATLAB path:

* true — Keep previous folder path values on MATLAB path.

+ false (default) — Remove previous older path values from MATLAB path.

Option for reset, set, or setConfig.

Example: Simulink.fileGenControl ('reset', 'keepPreviousPath', true);

createDir — Create folders for file generation
false (default) | true

Specify whether to create folders for file generation if the folders do not exist:

* true — Create folders for file generation.

+ false (default) — Do not create folders for file generation. The call produces an error.

Option for set or setConfig.

Example:
Simulink.fileGenControl ('set', 'CacheFolder', myCacheFolder, 'CodeGenFo
lder', myCodeGenFolder, 'keepPreviousPath', true, 'createDir', true);

Avoid Naming Conflicts

Using Simulink.fileGenControl to set CacheFolder and CodeGenFolder adds the
specified folders to your MATLAB search path. This function has the same potential for
introducing a naming conflict as using addpath to add folders to the search path. For
example, a naming conflict occurs if the folder that you specify for CacheFolder or
CodeGenFolder contains a model file with the same name as an open model. For more
information, see “What Is the MATLAB Search Path?” (MATLAB) and “Files and Folders
that MATLAB Accesses” (MATLAB).

To use a nondefault location for the simulation cache folder or code generation folder:
1 Delete any potentially conflicting artifacts that exist in:

* The current working folder, pwd.

The nondefault simulation cache and code generation folders that you intend to
use.

Simulink.fileGenControl

2 Specify the nondefault locations for the simulation cache and code generation folders
by using Simulink.fileGenControl or Simulink preferences.

Output Arguments

cfg — Current values of file generation control parameters
object handle

Instance of a Simulink.FileGenConfig object, which contains the current values of
file generation control parameters.

See Also

“Simulation cache folder” (Simulink) | “Code generation folder” (Simulink) | Code
generation folder structure (Simulink)

Topics
“Manage Build Process Folders”
“Reuse Simulation Builds for Faster Simulations” (Simulink)

Introduced in R2010b

2-139

2 Alphabetical List

2-140

Simulink.ModelReference.modifyProtectedModel

Modify existing protected model

Syntax

Simulink.ModelReference.modifyProtectedModel (model)
Simulink.ModelReference.modifyProtectedModel (model,Name, Value)

[harnessHandle] = Simulink.ModelReference.modifyProtectedModel (
model, 'Harness', true)

[~ ,neededVars] = Simulink.ModelReference.modifyProtectedModel (
model)

Description

Simulink.ModelReference.modifyProtectedModel (model) modifies options for
an existing protected model created from the specified model. If Name, Value pair
arguments are not specified, the modified protected model is updated with default values
and supports only simulation.

Simulink.ModelReference.modifyProtectedModel (model, Name,Value) uses
additional options specified by one or more Name, Value pair arguments. These options
are the same options that are provided by the Simulink.ModelReference.protect
function. However, these options have additional options to change encryption passwords
for read-only view, simulation, and code generation. When you add functionality to the
protected model or change encryption passwords, the unprotected model must be
available. The software searches for the model on the MATLAB path. If the model is not
found, the software reports an error.

[harnessHandle] = Simulink.ModelReference.modifyProtectedModel (
model, 'Harness', true) creates a harness model for the protected model. It returns
the handle of the harnessed model in harnessHandle.

[~ ,neededVars] = Simulink.ModelReference.modifyProtectedModel (
model) returns a cell array that includes the names of base workspace variables used by
the protected model.

Simulink.ModelReference.modifyProtectedModel

Examples

Update Protected Model with Default Values

Create a modifiable protected model with support for code generation, then reset it to
default values.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Create a modifiable protected model with support for code generation and Web view.

Simulink.ModelReference.protect ('sldemo mdlref counter',6 "Mode',...
'CodeGeneration', '"Modifiable', true, 'Report', true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Modify the model to use default values.

Simulink.ModelReference.modifyProtectedModel (...
'sldemo mdlref counter');

The resulting protected model is updated with default values and supports only
simulation.

Remove Functionality from Protected Model

Create a modifiable protected model with support for code generation and Web view,
then modify it to remove the Web view support.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

2-141

2 Alphabetical List

Create a modifiable protected model with support for code generation and Web view.

Simulink.ModelReference.protect ('sldemo mdlref counter',6 'Mode',...
'CodeGeneration', 'Webview',true, '"Modifiable', true, 'Report', true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Remove support for Web view from the protected model that you created.

Simulink.ModelReference.modifyProtectedModel (...
'sldemo mdlref counter', 'Mode', 'CodeGeneration', 'Report',true);

Change Encryption Password for Code Generation
Change an encryption password for a modifiable protected model.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Add the password that the protected model user must provide to generate code.

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation (...
'sldemo mdlref counter', 'cgpassword');

Create a modifiable protected model with a report and support for code generation with
encryption.

Simulink.ModelReference.protect ('sldemo mdlref counter',6 '"Mode',...
'CodeGeneration', '"Encrypt', true, '"Modifiable', true, '"Report', true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Change the encryption password for simulation.

2-142

Simulink.ModelReference.modifyProtectedModel

Simulink.ModelReference.modifyProtectedModel (

'sldemo mdlref counter', 'Mode', 'CodeGeneration', 'Encrypt', true, ...
'Report', true, 'ChangeSimulationPassword', ...
{'cgpassword', "'new password'});

Add Harness Model for Protected Model
Add a harness model for an existing protected model.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Create a modifiable protected model with a report and support for code generation with
encryption.

Simulink.ModelReference.protect ('sldemo mdlref counter', 'Mode', .
'CodeGeneration', '"Modifiable', true, 'Report', true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Add a harness model for the protected model.

[harnessHandle] = Simulink.ModelReference.modifyProtectedModel (...
'sldemo mdlref counter', 'Mode', 'CodeGeneration', 'Report',true,...
'Harness', true);

Input Arguments

model — Model name
string or character vector (default)

Model name, specified as a string or character vector. It contains the name of a model or
the path name of a Model block that references the protected model.

2-143

2 Alphabetical List

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" '). You can specify several name and value pair arguments in any order as
Namel, Valuel, ..., NameN, ValueN.

Example:
'Mode', 'CodeGeneration', 'OutputFormat', 'Binaries’', 'ObfuscateCode’', tr

ue specifies that obfuscated code be generated for the protected model. It also specifies
that only binary files and headers in the generated code be visible to users of the
protected model.

General

Path — Folder for protected model
current working folder (default) | string or character vector

Folder for protected model, specified as a string or character vector.

Example: 'Path', 'C:\Work'

Report — Option to generate a report
false (default) | true

Option to generate a report, specified as a Boolean value.

To view the report, right-click the protected-model badge icon and select Display
Report. Or, call the Simulink.ProtectedModel . open function with the report
option.

The report is generated in HTML format. It includes information on the environment,
functionality, license requirements, and interface for the protected model.

Example: 'Report’', true

Harness — Option to create a harness model
false (default) | true

Option to create a harness model, specified as a Boolean value.

Example: 'Harness', true

2-144

Simulink.ModelReference.modifyProtectedModel

CustomPostProcessingHook — Option to add postprocessing function for protected
model files
function handle

Option to add a postprocessing function for protected model files, specified as a function
handle. The function accepts a
Simulink.ModelReference.ProtectedModel.HookInfo object as an input variable.
This object provides information on the source code files and other files generated during
protected model creation. The object also provides information on exported symbols that
you must not modify. Prior to packaging the protected model, the postprocessing function
is called.

Example:
'CustomPostProcessingHook', @ (protectedMdlInf)myHook (protectedMdlInf)

Functionality

Mode — Model protection mode
"Normal' (default) | 'Accelerator' | 'CodeGeneration' | 'ViewOnly'

Model protection mode. Specify one of the following values:
* 'Normal':If the top model is running in 'Normal' mode, the protected model runs
as a child of the top model.

* 'Accelerator': The top model can run in 'Normal', 'Accelerator’', or 'Rapid
Accelerator' mode.

* 'CodeGeneration': The top model can run in 'Normal', 'Accelerator’, or
'Rapid Accelerator' mode and support code generation.

* '"ViewOnly': Turns off Simulate and Generate code functionality modes. Turns on
the read-only view mode.

Example: 'Mode', "Accelerator'

OutputFormat — Protected code visibility
'CompiledBinaries' (default) | 'MinimalCode' | 'AllReferencedHeaders'

Note This argument affects the output only when you specify Mode as 'Accelerator’
or 'CodeGeneration. When you specify Mode as "Normal', only a MEX-file is part of
the output package.

2-145

2 Alphabetical List

2-146

Protected code visibility. This argument determines what part of the code generated for a
protected model is visible to users. Specify one of the following values:

* 'CompiledBinaries': Only binary files and headers are visible.

* 'MinimalCode': All code in the build folder is visible. Users can inspect the code in
the protected model report and recompile it for their purposes.

* 'AllReferencedHeaders': All code in the build folder is visible. All headers
referenced by the code are also visible.

Example: 'OutputFormat', 'Al1ReferencedHeaders'

ObfuscateCode — Option to obfuscate generated code
true (default) | false

Option to obfuscate generated code, specified as a Boolean value. Applicable only when
code generation is enabled for the protected model.

Example: 'ObfuscateCode"', true

Webview — Option to include a Web view
false (default) | true

Option to include a read-only view of protected model, specified as a Boolean value.

To open the Web view of a protected model, use one of the following methods:

* Right-click the protected-model badge icon and select Show Web view.

* Usethe Simulink.ProtectedModel.open function. For example, to display the
Web view for protected model sldemo mdlref counter, you can call:

Simulink.ProtectedModel.open ('sldemo mdlref counter', 'webview');
* Double-click the . s1xp protected model file in the Current Folder browser.
* In the Block Parameter dialog box for the protected model, click Open Model.

Example: 'Webview', true
Encryption

ChangeSimulationPassword — Option to change the encryption password for simulation
cell array of two character vectors

Simulink.ModelReference.modifyProtectedModel

Option to change the encryption password for simulation, specified as a cell array of two
character vectors. The first vector is the old password, the second vector is the new
password.

Exannﬂe:'ChangeSimulationPassword',{'oldipassword','newipassword'}

ChangeViewPassword — Option to change the encryption password for read-only view
cell array of two character vectors

Option to change the encryption password for read-only view, specified as a cell array of
two character vectors. The first vector is the old password, the second vector is the new
password.

Example: 'ChangeViewPassword', {'old password', 'new password'}
ChangeCodeGenerationPassword — Option to change the encryption password for code

generation
cell array of two character vectors

Option to change the encryption password for code generation, specified as a cell array of
two character vectors. The first vector is the old password, the second vector is the new
password.

Example: 'ChangeCodeGenerationPassword',
{'old password', 'new password'}

Encrypt — Option to encrypt protected model
false (default) | true

Option to encrypt a protected model, specified as a Boolean value. Applicable when you
have specified a password during protection, or by using the following methods:

+ Password for read-only view of model:
Simulink.ModelReference.ProtectedModel.setPasswordForView

+ Password for simulation:
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation

+ Password for code generation:
Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneratio
n

Example: 'Encrypt', true

2-147

2 Alphabetical List

2-148

Output Arguments

harnessHandle — Handle of the harness model
double

Handle of the harness model, returned as a double or 0, depending on the value of
Harness.

If Harness is true, the value is the handle of the harness model; otherwise, the value is
0.

neededVars — Names of base workspace variables
cell array

Names of base workspace variables used by the protected model, returned as a cell array.

The cell array can also include variables that the protected model does not use.

See Also

Simulink.ModelReference.ProtectedModel.setPasswordForModify |
Simulink.ModelReference.protect

Introduced in R2014b

Simulink.ModelReference.protect

Simulink.ModelReference.protect

Obscure referenced model contents to hide intellectual property

Syntax

Simulink.ModelReference.protect (model)
Simulink.ModelReference.protect (model, Name, Value)

[harnessHandle] = Simulink.ModelReference.protect (model, '
Harness', true)
[~ ,neededVars]

Simulink.ModelReference.protect (model)

Description

Simulink.ModelReference.protect (model) creates a protected model from the
specified model. It places the protected model in the current working folder. The
protected model has the same name as the source model. It has the extension . s1xp.

Simulink.ModelReference.protect (model, Name, Value) uses additional options
specified by one or more Name, Value pair arguments.

[harnessHandle] = Simulink.ModelReference.protect (model, '
Harness', true) creates a harness model for the protected model. It returns the handle
of the harnessed model in harnessHandle.

[~ ,neededVars] = Simulink.ModelReference.protect (model) returns a cell
array that includes the names of base workspace variables used by the protected model.

Examples

Protect Referenced Model

Protect a referenced model and place the protected model in the current working folder.

2-149

2 Alphabetical List

2-150

sldemo mdlref bus;
model= 'sldemo mdlref counter bus'

Simulink.ModelReference.protect (model) ;

A protected model named sldemo _mdlref counter bus.slxp is created. The
protected model file is placed in the current working folder.

Place Protected Model in Specified Folder

Protect a referenced model and place the protected model in a specified folder.

sldemo mdlref bus;
model= 'sldemo mdlref counter bus'

Simulink.ModelReference.protect (model, "Path', 'C:\Work") ;

A protected model named sldemo mdlref counter bus.slxp is created. The
protected model file is placed in C: \Work.

Generate Code for Protected Model

Protect a referenced model, generate code for it in Normal mode, and obfuscate the code.

sldemo_mdlref bus;
model= 'sldemo mdlref counter bus'

Simulink.ModelReference.protect (model, 'Path', 'C:\Work', 'Mode', 'CodeGeneration', ...
'"ObfuscateCode', true);

A protected model named sldemo mdlref counter bus.slxp is created. The
protected model file is placed in the C: \Work folder. The protected model runs as a child
of the parent model. The code generated for the protected model is obfuscated by the
software.

Control Code Visibility for Protected Model

Control code visibility by allowing users to view only binary files and headers in the code
generated for a protected model.

Simulink.ModelReference.protect

sldemo_mdlref bus;
model= 'sldemo mdlref counter bus'

Simulink.ModelReference.protect (model, 'Mode', 'CodeGeneration', 'OutputFormat', ...
'CompiledBinaries');

A protected model named sldemo mdlref counter bus.slxp is created. The
protected model file is placed in the current working folder. Users can view only binary
files and headers in the code generated for the protected model.

Create Harness Model for Protected Model

Create a harness model for a protected model and generate an HTML report.

sldemo_mdlref bus;
modelPath= 'sldemo mdlref bus/CounterA'

[harnessHandle] = Simulink.ModelReference.protect (modelPath, 'Path', 'C:\Work"', ...
'Harness', true, 'Report', true);

A protected model named sldemo mdlref counter bus.slxp is created, along with
an untitled harness model. The protected model file is placed in the C: \Work folder. The
folder also contains an HTML report. The handle of the harness model is returned in
harnessHandle.

. Protected Models for Model Reference

. “Test the Protected Model”

. “Package a Protected Model”

. “Specify Custom Obfuscator for Protected Model”

. “Configure and Run SIL Simulation” (Embedded Coder)

. “Define Callbacks for Protected Model”

Input Arguments

model — Model name
string or character vector (default)

Model name, specified as a string or character vector. It contains the name of a model or
the path name of a Model block that references the model to be protected.

2-151

2 Alphabetical List

2-152

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN, ValueN.

Example:

'Mode', 'CodeGeneration', 'OutputFormat', 'Binaries', 'ObfuscateCode', tr
ue specifies that obfuscated code be generated for the protected model. It also specifies
that only binary files and headers in the generated code be visible to users of the
protected model.

Harness — Option to create a harness model
false (default) | true

Option to create a harness model, specified as a Boolean value.

Example: 'Harness', true

Mode — Model protection mode
"Normal' (default) | "Accelerator' | 'CodeGeneration' | 'ViewOnly'

Model protection mode. Specify one of the following values:
* 'Normal': If the top model is running in 'Normal ' mode, the protected model runs
as a child of the top model.

* 'Accelerator': The top model can run in 'Normal', 'Accelerator’', or 'Rapid
Accelerator' mode.

* 'CodeGeneration': The top model can run in 'Normal', 'Accelerator’, or
'Rapid Accelerator' mode and support code generation.

* '"ViewOnly': Turns off Simulate and Generate code functionality modes. Turns on
the read-only view mode.

Example: 'Mode', "Accelerator'

CodeInterface — Interface through which generated code is accessed by Model block
'Model reference' (default) | 'Top model’

Applies only if the system target file (SystemTargetFile) is set to an ERT based
system target file (for example, ert. t1c). Requires Embedded Coder license.

Simulink.ModelReference.protect

Specify one of the following values:

* 'Model reference': Code access through the model reference code interface, which
allows use of the protected model within a model reference hierarchy. Users of the
protected model can generate code from a parent model that contains the protected
model. In addition, users can run Model block SIL/PIL simulations with the protected
model.

* 'Top model': Code access through the standalone interface. Users of the protected
model can run Model block SIL/PIL simulations with the protected model.

Example: 'CodeInterface', 'Top model'

ObfuscateCode — Option to obfuscate generated code
true (default) | false

Option to obfuscate generated code, specified as a Boolean value. Applicable only when
code generation during protection is enabled.

Example: 'ObfuscateCode"', true

Path — Folder for protected model
current working folder (default) | string or character vector

Folder for protected model, specified as a string or character vector.

Example: 'Path', 'C:\Work'

Report — Option to generate a report
false (default) | true

Option to generate a report, specified as a Boolean value.

To view the report, right-click the protected-model badge icon and select Display
Report. Or, call the Simulink.ProtectedModel .open function with the report
option.

The report is generated in HTML format. It includes information on the environment,
functionality, license requirements, and interface for the protected model.

Example: 'Report’', true

OutputFormat — Protected code visibility
'CompiledBinaries' (default) | 'MinimalCode' | 'Al1ReferencedHeaders'

2-153

2 Alphabetical List

2-154

Note This argument affects the output only when you specify Mode as 'Accelerator’
or 'CodeGeneration. When you specify Mode as 'Normal', only a MEX-file is part of
the output package.

Protected code visibility. This argument determines what part of the code generated for a
protected model is visible to users. Specify one of the following values:
* 'CompiledBinaries': Only binary files and headers are visible.

* 'MinimalCode': All code in the build folder is visible. Users can inspect the code in
the protected model report and recompile it for their purposes.

* 'AllReferencedHeaders': All code in the build folder is visible. All headers
referenced by the code are also visible.

Example: 'OutputFormat', '"Al1ReferencedHeaders'

Webview — Option to include a Web view
false (default) | true

Option to include a read-only view of protected model, specified as a Boolean value.
To open the Web view of a protected model, use one of the following methods:

* Right-click the protected-model badge icon and select Show Web view.

+ Usethe simulink.ProtectedModel.open function. For example, to display the
Web view for protected model sldemo mdlref counter, you can call:
Simulink.ProtectedModel.open('sldemo mdlref counter', 'webview');

* Double-click the . s1xp protected model file in the Current Folder browser.

* In the Block Parameter dialog box for the protected model, click Open Model.

Example: 'Webview', true

Encrypt — Option to encrypt protected model
false (default) | true

Option to encrypt a protected model, specified as a Boolean value. Applicable when you
have specified a password during protection, or by using the following methods:

+ Password for read-only view of model:
Simulink.ModelReference.ProtectedModel.setPasswordForView

Simulink.ModelReference.protect

+ Password for simulation:
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation

+ Password for code generation:
Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneratio
n

Example: 'Encrypt', true

CustomPostProcessingHook — Option to add postprocessing function for protected
model files
function handle

Option to add a postprocessing function for protected model files, specified as a function
handle. The function accepts a
Simulink.ModelReference.ProtectedModel.HookInfo object as an input variable.
This object provides information on the source code files and other files generated during
protected model creation. It also provides information on exported symbols that you must
not modify. Prior to packaging the protected model, the postprocessing function is called.

Example:
'CustomPostProcessingHook', @ (protectedMdlInf)myHook (protectedMdlInt)

Modifiable — Option to create a modifiable protected model
false (default) | true

Option to create a modifiable protected model, specified as a Boolean value. To use this
option:

* Add a password for modification using the
Simulink.ModelReference.ProtectedModel.setPasswordForModify function.
If a password has not been added at the time that you create the modifiable protected
model, you are prompted to create one.

* Modify the options of your protected model by first providing the modification
password using the
Simulink.ModelReference.ProtectedModel.setPasswordForModify function.
Then use the Simulink.ModelReference.modifyProtectedModel function to
make your option changes.

Example: 'Modifiable', true

Callbacks — Option to specify protected model callbacks
cell array

2-155

2 Alphabetical List

2-156

Option to specify callbacks for a protected model, specified as a cell array of
Simulink.ProtectedModel.Callback objects.

Example: 'Callbacks', {pmcallback sim, pmcallback cg}

Output Arguments

harnessHandle — Handle of the harness model
double

Handle of the harness model, returned as a double or 0, depending on the value of
Harness.

If Harness is true, the value is the handle of the harness model; otherwise, the value is
0.

neededVars — Names of base workspace variables
cell array

Names of base workspace variables used by the model being protected, returned as a cell
array.

The cell array can also include variables that the protected model does not use.

Alternatives

“Create a Protected Model”

See Also

Simulink.ModelReference.ProtectedModel.clearPasswords |
Simulink.ModelReference.ProtectedModel.clearPasswordsForModel |
Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration |
Simulink.ModelReference.ProtectedModel.setPasswordForModify |
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation |
Simulink.ModelReference.ProtectedModel.setPasswordForView |
Simulink.ModelReference.modifyProtectedModel

Simulink.ModelReference.protect

Topics

Protected Models for Model Reference

“Test the Protected Model”

“Package a Protected Model”

“Specify Custom Obfuscator for Protected Model”
“Configure and Run SIL Simulation” (Embedded Coder)
“Define Callbacks for Protected Model”

“Protected Model” (Simulink)

“Protect a Referenced Model”

“Protected Model File”

“Harness Model”

“Protected Model Report”

“Code Generation Support in a Protected Model”
“Code Interfaces for SIL and PIL” (Embedded Coder)

Introduced in R2012b

2-157

2 Alphabetical List

2-158

Simulink.ModelReference.ProtectedModel.clearPas
swords

Clear all cached passwords for protected models

Syntax

Simulink.ModelReference.ProtectedModel.clearPasswords ()

Description

Simulink.ModelReference.ProtectedModel.clearPasswords () clears all
protected model passwords that have been cached during the current MATLAB session.
If this function is not called, cached passwords are cleared at the end of a MATLAB
session.

Examples

Clear all cached passwords for protected models

After using protected models, clear passwords cached for the models during the MATLAB
session.

Simulink.ModelReference.ProtectedModel.clearPasswords ()

See Also

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel

Topics
“Protect a Referenced Model”

Simulink.ModelReference.ProtectedModel.clearPasswords

Introduced in R2014b

2-159

2 Alphabetical List

2-160

Simulink.ModelReference.ProtectedModel.clearPas
swordsForModel

Clear cached passwords for a protected model

Syntax

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel (model)

Description

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel (model)
clears all protected model passwords for model that have been cached during the current

MATLAB session. If this function is not called, cached passwords are cleared at the end
of a MATLAB session.

Examples

Clear all cached passwords for a protected model

After using a protected model, clear passwords cached for the model during the MATLAB
session.

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel (model)

Input Arguments

model — Protected model name
string or character vector

Model name specified as a string or character vector

Example: ‘rtwdemo counter’

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel

Data Types: char

See Also

Simulink.ModelReference.ProtectedModel.clearPasswords

Topics
“Protect a Referenced Model”

Introduced in R2014b

2-161

2 Alphabetical List

2-162

Simulink.ModelReference.ProtectedModel.HookInfo
class

Package: Simulink.ModelReference.ProtectedModel

Represent files and exported symbols generated by creation of protected model

Description

Specifies information about files and symbols generated when creating a protected
model. The creator of a protected model can use this information for postprocessing of the
generated files prior to packaging. Information includes:

+ List of source code files (*.c, *.h, *.cpp,*.hpp).

+ List of other related files (*.mat, *.rsp, *.prj, ete.).

+ List of exported symbols that you must not modify.

Construction

To access the properties of this class, use the ‘CustomPostProcessingHook’ option of
the Simulink.ModelReference.protect function. The value for the option is a
handle to a postprocessing function accepting a
Simulink.ModelReference.ProtectedModel.HookInfo object as input.

Properties

ExportedSymbols — Exported Symbols
cell array of character vectors

A list of exported symbols generated by protected model that you must not modify.
Default value is empty.

NonSourceFiles — Non source code files
cell array of character vectors

Simulink.ModelReference.ProtectedModel.HookInfo class

A list of non-source files generated by protected model creation. Examples are *.mat,
*.rsp, and *.prj. Default value is empty.

SourceFiles — Source code files
cell array of character vectors

A list of source code files generated by protected model creation. Examples are *.c, *.h,
*.cpp, and *. hpp. Default value is empty.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

See Also

Simulink.ModelReference.protect

Topics
“Specify Custom Obfuscator for Protected Model”

2-163

2 Alphabetical List

2-164

Simulink.ModelReference.ProtectedModel.setPass
wordForCodeGeneration

Add or provide encryption password for code generation from protected model

Syntax

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration (
model, password)

Description

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration (
model, password) adds an encryption password for code generation if you create a
protected model. If you use a protected model, the function provides the required
password to generate code from the model.

Examples

Create a Protected Model with Encryption

Create a protected model with encryption for code generation.

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration(. ..
'sldemo mdlref counter', 'password');

Simulink.ModelReference.protect ('sldemo mdlref counter',...

'Mode', 'Code Generation', 'Encrypt', true, 'Report', true);

A protected model named sldemo mdlref counter.slxp is created that requires an
encryption password for code generation.

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration

Generate Code from an Encrypted Protected Model
Use a protected model with encryption for code generation.

Provide the encryption password required for code generation from the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration (...
'sldemo mdlref counter', 'password');

After you have provided the encryption password, you can generate code from the
protected model.

Input Arguments

model — Model name
string or character vector

Model name, specified as a string or character vector. It contains the name of a model or
the path name of a Model block that references the protected model.

password — Password for protected model code generation
string or character vector

Password, specified as a string or character vector. If the protected model is encrypted for
code generation, the password is required.

See Also

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation |
Simulink.ModelReference.ProtectedModel.setPasswordForView |
Simulink.ModelReference.protect

Introduced in R2014b

2-165

2 Alphabetical List

2-166

Simulink.ModelReference.ProtectedModel.setPass
wordForModify

Add or provide password for modifying protected model

Syntax

Simulink.ModelReference.ProtectedModel.setPasswordForModify (model,
password)

Description

Simulink.ModelReference.ProtectedModel.setPasswordForModify (model,
password) adds a password for a modifiable protected model. After the password has
been created, the function provides the password for modifying the protected model.

Examples

Add Functionality to Protected Model

Create a modifiable protected model with support for code generation, then modify it to
add Web view support.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Create a modifiable protected model with support for code generation and Web view.

Simulink.ModelReference.protect ('sldemo mdlref counter',6 'Mode', ...
'CodeGeneration', 'Modifiable',true, 'Report', true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'sldemo mdlref counter', 'password');

Add support for Web view to the protected model that you created.
Simulink.ModelReference.modifyProtectedModel (...

'sldemo mdlref counter', 'Mode', 'CodeGeneration', 'Webview', true, ...
'Report', true);

Input Arguments

model — Model name
string or character vector

Model name, specified as a string or character vector. It contains the name of a model or
the path name of a Model block that references the protected model to be modified.

password — Password to modify protected model
string or character vector

Password, specified as a string or character vector. The password is required for
modification of the protected model.

See Also
Simulink.ModelReference.modifyProtectedModel |
Simulink.ModelReference.protect

Introduced in R2014b

2-167

2 Alphabetical List

2-168

Simulink.ModelReference.ProtectedModel.setPass
wordForSimulation

Add or provide encryption password for simulation of protected model

Syntax

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation (
model, password)

Description

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation (
model, password) adds an encryption password for simulation if you create a protected
model. If you use a protected model, the function provides the required password to
simulate the model.

Examples

Create a Protected Model with Encryption

Create a protected model with encryption for simulation.

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation (...
'sldemo mdlref counter', 'password');
Simulink.ModelReference.protect ('sldemo mdlref counter',...
'Encrypt', true, 'Report', true);

A protected model named sldemo mdlref counter.slxp is created that requires an
encryption password for simulation.

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation

Simulate an Encrypted Protected Model
Use a protected model with encryption for simulation.

Provide the encryption password required for simulation of the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation (...
'sldemo mdlref counter', 'password');

After you have provided the encryption password, you can simulate the protected model.

Input Arguments

model — Model name
string or character vector

Model name, specified as a string or character vector. It contains the name of a model or
the path name of a Model block that references the protected model.

password — Password for protected model simulation
string or character vector

Password, specified as a string or character vector. If the protected model is encrypted for
simulation, the password is required.

See Also

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration |
Simulink.ModelReference.ProtectedModel.setPasswordForView |
Simulink.ModelReference.protect

Introduced in R2014b

2-169

2 Alphabetical List

2-170

Simulink.ModelReference.ProtectedModel.setPass
wordForView

Add or provide encryption password for read-only view of protected model

Syntax

Simulink.ModelReference.ProtectedModel.setPasswordForView (model,
password)

Description

Simulink.ModelReference.ProtectedModel.setPasswordForView (model,
password) adds an encryption password for read-only view if you create a protected
model. If you use a protected model, the function provides the required password for a
read-only view of the model.

Examples

Create a Protected Model with Encryption

Create a protected model with encryption for read-only view.

Simulink.ModelReference.ProtectedModel.setPasswordForView (...
'sldemo mdlref counter', 'password');
Simulink.ModelReference.protect ('sldemo mdlref counter',...
'Webview', true, '"Encrypt', true, 'Report', true);

A protected model named sldemo mdlref counter.slxp is created that requires an
encryption password for read-only view.

Simulink.ModelReference.ProtectedModel.setPasswordForView

View an Encrypted Protected Model
Use a protected model with encryption for read-only view.

Provide the encryption password required for the read-only view of the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForView (...
'sldemo mdlref counter', 'password');

After you have provided the encryption password, you have access to the read-only view
of the protected model.

Input Arguments

model — Model name
string or character vector

Model name, specified as a string or character vector. It contains the name of a model or
the path name of a Model block that references the protected model.

password — Password for read-only view of protected model
string or character vector

Password, specified as a string or character vector. If the protected model is encrypted for
read-only view, the password is required.

See Also

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration |
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation |
Simulink.ModelReference.protect

Introduced in R2014b

2-171

2 Alphabetical List

2-172

Simulink.ProtectedModel.addTarget

Add code generation support for current target to protected model

Syntax

Simulink.ProtectedModel.addTarget (model)

Description

Simulink.ProtectedModel.addTarget (model) adds code generation support for the
current model target to a protected model of the same name. Each target that the
protected model supports is identified by the root of the Code Generation > System
Target file (SystemTargetFile) parameter. For example, if the System Target file is
ert.tlc, the target identifier is ert.

To add the current target:

* The model and the protected model of the same name must be on the MATLAB path.

* The protected model must have the Modifiable option enabled and have a password
for modification.

* The target must be unique in the protected model.

If you add a target to a protected model that did not previously support code generation,
the software switches the protected model Mode to CodeGeneration and
ObfuscateCode to true.

Examples

Add a Target to a Protected Model
Add the currently configured model target to the protected model.

Load the model and save a local copy.

Simulink.ProtectedModel.addTarget

sldemo mdlref counter
save_system('sldemo_mdlref_counter','mdlref_counter.slx');

Add a required password for modifying a protected model. If you do not add a password,
you are prompted to set a password when you create a modifiable, protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'mdlref counter', 'password');

Create a modifiable, protected model with support for code generation.

Simulink.ModelReference.protect ('mdlref counter',6 'Mode', ...
'CodeGeneration', 'Modifiable',true, 'Report', true);

Get a list of targets that the protected model supports.
st = Simulink.ProtectedModel.getSupportedTargets('mdlref counter')

Configure the unprotected model to support a new target.

set param('mdlref counter', 'SystemTargetFile',6 'ert.tlc');
save system('mdlref counter');

Add support to the protected model for the new target. You are prompted for the
modification password.

Simulink.ProtectedModel.addTarget ('mdlref counter');

Verify that support for the new target has been added to the protected model.
st = Simulink.ProtectedModel.getSupportedTargets ('mdlref counter')

. “Create a Protected Model with Multiple Targets”

Input Arguments

model — Model name
string or character vector

Model name, specified as a string or character vector. It contains the name of a model or
the path name of a Model block that references the protected model.

2-173

2 Alphabetical List

See Also

Simulink.ModelReference.protect | Simulink.ProtectedModel.getConfigSet
| Simulink.ProtectedModel.getCurrentTarget |
Simulink.ProtectedModel.getSupportedTargets |
Simulink.ProtectedModel.removeTarget |
Simulink.ProtectedModel.setCurrentTarget

Topics
“Create a Protected Model with Multiple Targets”

Introduced in R2015a

2-174

Simulink.ProtectedModel.Callback class

Simulink.ProtectedModel.Callback class

Package: Simulink.ProtectedModel

Represents callback code that executes in response to protected model events

Description

For a protected model functionality, the Simulink.ProtectedModel.Callback object
specifies code to execute in response to an event. The callback code can be a character

vector of MATLAB commands or a MATLAB script. The object includes:
+ The code to execute for the callback.

* The event that triggers the callback.

* The protected model functionality that the event applies to.

* The option to override the protected model build.

When you create a protected model, to specify callbacks, call the
Simulink.ModelReference.protect on page 2-149 function with the 'Callbacks' option.
The value of this option is a cell array of Simulink.ProtectedModel.Callback
objects.

Construction

pmCallback = Simulink.ProtectedModel.Callback(event, functionality,
callbackText) creates a callback object for a specific protected model functionality and
event. The callbackText specifies MATLAB commands to execute for the callback.

pmCallback = Simulink.ProtectedModel.Callback(event, functionality,
callbackFile) creates a callback object for a specific protected model functionality and
event. The callbackFile specifies a MATLAB script to execute for the callback. The
script must be on the MATLAB path.

2-175

2 Alphabetical List

2-176

Input Arguments

event — Event that triggers callback
'PreAccess' | 'Build'

Callback trigger event. Specify one of the following values:

* 'PreAccess': Callback code is executed before simulation, build, or read-only
viewing.

+ 'Build': Callback code is executed before build. Valid only for ' CODEGEN'

functionality.

functionality — Protected model functionality
"CODEGEN"' | 'SIM' | '"VIEW' | 'AUTO'

Protected model functionality that the event applies to. Specify one of the following
values:

* '"CODEGEN': Code generation.

* 'SIM': Simulation.

+ 'VIEW': Read-only Web view.

* 'AUTO': If the event is 'PreAccess’', the callback executes for each functionality. If
the event is 'Build’, the callback executes only for ' CODEGEN' functionality.

If you do not specify a functionality, the default behavior is 'AUTO".

callbackText — Callback code to execute
string or character vector

MATLAB commands to execute in response to an event, specified as a string or character
vector.

callbackFile — Callback script to execute
string or character vector

MATLAB script to execute in response to an event, specified as a string or character
vector. Script must be on the MATLAB path.

Simulink.ProtectedModel.Callback class

Properties

AppliesTo — Protected model functionality
"CODEGEN' | '"SIM' | 'VIEW' | "AUTO'

Protected model functionality that the event applies to. Value is one of the following:

* 'CODEGEN': Code generation.

* 'SIM': Simulation.

+ 'VIEW': Read-only Web view.

+ 'AUTO':If the event is 'PreAccess', the callback executes for each functionality. If
the event is 'Build', the callback executes only for 'CODEGEN' functionality.

If you do not specify a functionality, the default behavior is 'AUTO".

CallbackFileName — Callback script to execute
string or character vector

MATLAB script to execute in response to an event, specified as a string or character
vector. Script must be on the MATLAB path.
Example: 'pmCallback.m'

CallbackText — Callback code to execute
string or character vector

MATLAB commands to execute in response to an event, specified as a string or character
vector.
Example: 'A = [15 150];disp (A)"

Event — Event that triggers callback
'PreAccess' | 'Build'

Callback trigger event. Value is one of the following:

* 'PreAccess': Callback code is executed before simulation, build, or read-only
viewing.

* 'Build': Callback code is executed before build. Valid only for 'CODEGEN"
functionality.

2-177

2 Alphabetical List

2-178

OverrideBuild — Option to override protected model build
false (default) | true

Option to override the protected model build process, specified as a Boolean value.

Applies only to a callback object that you define for a 'Build’' event for 'CODEGEN'
functionality. You set this option using the setOverrideBuild method.

Methods

setOverrideBuild Specify option to override protected model build

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Create Protected Model Using a Callback

Create a callback object with a character vector of MATLAB commands for the callback
code. Specify the object when you create a protected model.

pmCallback = Simulink.ProtectedModel.Callback('PreAccess', ...
'SIM', 'disp(''Hello world!'")")
Simulink.ModelReference.protect ('sldemo mdlref counter',...
'Callbacks', {pmCallback})

sim('sldemo mdlref basic')

For each instance of the protected model reference in the top model, the output is listed.

Simulink.ProtectedModel.Callback class

Create Protected Model With a Callback Script

Create a callback object with a MATLAB script for the callback code. Specify the object
when you create a protected model.

pmCallback = Simulink.ProtectedModel.Callback('Build', ...
'CODEGEN', 'pm callback.m')

Simulink.ModelReference.protect ('sldemo mdlref counter', ...
'Mode', 'CodeGeneration', 'Callbacks', {pmCallback})
rtwbuild('sldemo mdlref basic')

Before the protected model build process begins, code in pm_callback.m executes.

See Also

Simulink.ModelReference.protect |
Simulink.ProtectedModel.getCallbackInfo

Topics

“Define Callbacks for Protected Model”

“Protect a Referenced Model”

“Code Generation Support in a Protected Model”

Introduced in R2016a

2-179

2 Alphabetical List

setOverrideBuild

Class: Simulink.ProtectedModel.Callback
Package: Simulink.ProtectedModel

Specify option to override protected model build

Syntax

setOverrideBuild (override)

Description

setOverrideBuild (override) specifies whether a
Simulink.ProtectedModel.Callback object can override the build process. This
method is valid only for callbacks that execute in response to a 'Build' event for
'"CODEGEN' functionality.

Input Arguments

override — Option to override protected model build process
false (default) | true

Option to override the protected model build process, specified as a Boolean value. This
option applies only to a callback object defined for a 'Build' event for ' CODEGEN'
functionality.

Example: pmcallback.setOverrideBuild (true)

2-180

setOverrideBuild

Examples

Create Code Generation Callback to Override Build Process

Create a callback object with a character vector of MATLAB commands for the callback
code. Specify that the callback override the build process.

pmCallback = Simulink.ProtectedModel.Callback('Build', ...
'CODEGEN"', 'disp(''Hello world!'")")
pmCallback.setOverrideBuild (true) ;
Simulink.ModelReference.protect ('sldemo mdlref counter', ...
'Mode', 'CodeGeneration', 'Callbacks', {pmCallback})
rtwbuild('sldemo mdlref basic')

See Also

Simulink.ModelReference.protect | Simulink.ProtectedModel.Callback

Topics

“Define Callbacks for Protected Model”

“Protect a Referenced Model”

“Code Generation Support in a Protected Model”

Introduced in R2016a

2-181

2 Alphabetical List

2-182

Simulink.ProtectedModel.Callbackinfo class

Package: Simulink.ProtectedModel

Protected model information for use in callbacks

Description

A Simulink.ProtectedModel.CallbackInfo object contains information about a
protected model that you can use in the code executed for a callback. The object provides:
* Model name.

+ List of models and submodels in the protected model container.

+ Callback event.

+ Callback functionality.

* Code interface.

* Current target. This information is available only for code generation callbacks.

Construction

cbinfobj =
Simulink.ProtectedModel.getCallbackInfo (modelName, event, functionalit
y) creates a Simulink.ProtectedModel.CallbackInfo object.

Properties

CodeInterface — Code interface generated by protected model
'"Top model' | '"Model reference'

Code interface that the protected model generates.

Event — Event that triggered callback
'PreAccess' 'Build’

Simulink.ProtectedModel.CallbackInfo class

Callback trigger event. Value is one of the following:

* 'PreAccess': Callback code executed before simulation, build, or read-only viewing.

* 'Build': Callback code executed before build. Valid only for ' CODEGEN"
functionality.

Functionality — Protected model functionality
"CODEGEN"' | 'SIM' | '"VIEW' | 'AUTO'

Protected model functionality that the event applies to. Value is one of the following:

* 'CODEGEN': Code generation.
* 'SIM': Simulation.
* 'VIEW': Read-only Web view.

* 'AUTO':Ifthe event is 'PreAccess’, the callback executes for each functionality. If
the event is 'Build’', the callback executes only for 'CODEGEN' functionality.

If the value of functionality is blank, the default behavior is 'AUTO".

ModelName — Protected model name
character vector

Protected model name, specified as a character vector.

SubModels — Models and submodels in the protected model container
cell array of character vectors

Names of all models and submodels in the protected model container, specified as a cell
array of character vectors.

Target — Current target
character vector

Current target identifier for the protected model, specified as a character vector. This
property is available only for code generation callbacks.

2-183

2 Alphabetical List

2-184

Methods

getBuildInfoForModel Get build information object for specified model

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Use Protected Model Information in Simulation Callback

Create a protected model callback that uses information from the
Simulink.ProtectedModel.Callback object.

First, on the MATLAB path, create a callback script , pm callback.m, containing:

sl = 'Simulating protected model: ';

cbinfobj = Simulink.ProtectedModel.getCallbackInfo(...
'sldemo mdlref counter', 'PreAccess’','SIM');

disp([sl cbinfobj.ModelName])

When you create a protected model with a simulation callback, use the script.

pmCallback = Simulink.ProtectedModel.Callback('PreAccess'...
,'SIM', 'pm callback.m')
Simulink.ModelReference.protect ('sldemo mdlref counter',...
'Callbacks', {pmCallback})

Simulate the protected model. For each instance of the protected model reference in the
top model, the output from the callback is listed.

sim('sldemo mdlref basic')
Simulating protected model: sldemo mdlref cc

Simulating protected model: sldemo mdlref
Simulating protected model: sldemo mdlref counter

Simulink.ProtectedModel.CallbackInfo class

See Also

Simulink.ModelReference.protect |
Simulink.ProtectedModel.getCallbackInfo

Topics

“Define Callbacks for Protected Model”

“Protect a Referenced Model”

“Code Generation Support in a Protected Model”

Introduced in R2016a

2-185

2 Alphabetical List

2-186

Simulink.ProtectedModel.getCallbackinfo

Get Simulink.ProtectedModel.CallbackInfo object for use by callbacks

Syntax

cbinfobj = Simulink.ProtectedModel.getCallbackInfo (modelName, event,
functionality)

Description

cbinfobj = Simulink.ProtectedModel.getCallbackInfo (modelName, event,
functionality) returns a Simulink.ProtectedModel.CallbackInfo object that
provides information for protected model callbacks. The object contains information
about the protected model, including:

* Model name.

* List of models and submodels in the protected model container.

+ Callback event.

+ Callback functionality.

* Code interface.

+ Current target. This information is available only for code generation callbacks.

Examples

Use Protected Model Information in Code Generation Callback

On the MATLAB path, create a callback script, pm callback.m, containing:

sl = 'Code interface is: ';

cbinfobj = Simulink.ProtectedModel.getCallbackInfo(...
'sldemo mdlref counter', 'Build', 'CODEGEN') ;

disp([sl cbinfobj.CodelInterface]);

Simulink.ProtectedModel.getCallbackinfo

When you create a protected model with a simulation callback, use the script.

pmCallback = Simulink.ProtectedModel.Callback('Build', ...

'CODEGEN', 'pm callback.m')
Simulink.ModelReference.protect ('sldemo mdlref counter',...
'Mode', 'CodeGeneration', 'Callbacks', {pmCallback})

Build the protected model. Before the start of the protected model build process, the code
interface is displayed.

rtwbuild('sldemo mdlref basic')

Input Arguments

modelName — Protected model name
string or character vector

Protected model name, specified as a string or character vector.

event — Event that triggered callback
'PreAccess' | 'Build'’

Callback trigger event. Value is one of the following:

* 'PreAccess': Callback code executed before simulation, build, or read-only viewing.
* 'Build': Callback code executed before build. Valid only for ' CODEGEN"
functionality.

functionality — Protected model functionality
"CODEGEN"' | 'SIM' | 'VIEW' | 'AUTO'

Protected model functionality that the event applies to. Value is one of the following:

* 'CODEGEN': Code generation.

* 'SIM': Simulation.

* 'VIEW': Read-only Web view.

* 'AUTO':Ifthe event is 'PreAccess', the callback executes for each functionality. If

the event is 'Build’', the callback executes only for ' CODEGEN' functionality.

If the value of functionality is blank, the default behavior is 'AUTO"'.

2-187

2 Alphabetical List

Output Arguments

cbinfobj — Callback information object
Simulink.ProtectedModel.CallbackInfo

Callback information, specified as a Simulink.ProtectedModel.CallbackInfo
object.

See Also

Simulink.ModelReference.protect | Simulink.ProtectedModel.CallbackInfo

Topics

“Define Callbacks for Protected Model”

“Protect a Referenced Model”

“Code Generation Support in a Protected Model”

Introduced in R2016a

2-188

getBuildInfoForModel

getBuildinfoForModel

Class: Simulink.ProtectedModel.CallbackInfo
Package: Simulink.ProtectedModel

Get build information object for specified model

Syntax

bldobj = getBuildInfoForModel (model)

Description

bldobj = getBuildInfoForModel (model) returns a handle to an RTW.BuildInfo
object. This object specifies the build toolchain and arguments. The model name must be
in the list of model names in the SubModels property of the
Simulink.ProtectedModel.CallbackInfo object. You can call this method only for
code generation callbacks in response to a 'Build' event.

Input Arguments

model — Model name
string or character vector

Model name, specified as a string or character vector. The model name must be in the
list of model names in the SubModels property of the
Simulink.ProtectedModel.CallbackInfo object. You can call this method only for
code generation callbacks in response to a 'Build' event.

Output Arguments

bldobj — Obiject for build toolchain and arguments
RTW.BuildInfo

2-189

2 Alphabetical List

2-190

Build toolchain and arguments, specified as a RTW.BuildInfo object. If you do not call
the method for a code generation callback and 'Build’' event, the return value is an
empty array.

Examples

Get Build Information from a Code Generation Callback

On the MATLAB path, create a callback script, pm callback.m, containing:

cbinfobj = Simulink.ProtectedModel.getCallbackInfo(...
'sldemo mdlref counter', 'Build', 'CODEGEN') ;

bldinfo = cbinfobj.getBuildInfoForModel (cbinfobj.ModelName) ;
buildargs = getBuildArgs (bldinfo)

When you create a protected model with a simulation callback, use the script.

pmCallback = Simulink.ProtectedModel.Callback('Build', ...
'CODEGEN', 'pm callback.m'")
Simulink.ModelReference.protect ('sldemo mdlref counter',...
'Mode', 'CodeGeneration', 'Callbacks', {pmCallback})

Build the protected model. Before the start of the protected model build, the build
arguments are displayed.

rtwbuild('sldemo mdlref basic')

See Also

Simulink.ModelReference.protect | Simulink.ProtectedModel.CallbackInfo

Topics

“Define Callbacks for Protected Model”

“Protect a Referenced Model”

“Code Generation Support in a Protected Model”

Introduced in R2016a

Simulink.ProtectedModel.getConfigSet

Simulink.ProtectedModel.getConfigSet

Get configuration set for current protected model target or for specified target

Syntax

configSet = Simulink.ProtectedModel.getConfigSet (protectedModel)

configSet = Simulink.ProtectedModel.getConfigSet (protectedModel,
targetlID)
Description

configSet = Simulink.ProtectedModel.getConfigSet (protectedModel)
returns the configuration set object for the current, protected model target.

configSet = Simulink.ProtectedModel.getConfigSet (protectedModel,
targetID) returns the configuration set object for a specified target that the protected
model supports.

Examples

Get Configuration Set for Current Target
Get the configuration set for the currently configured, protected model target.

Load the model and save a local copy.

sldemo mdlref counter
save system('sldemo mdlref counter', 'mdlref counter.slx');

Add a required password for modifying a protected model. If you do not add a password,
you are prompted to set a password when you create a modifiable, protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'mdlref counter', 'password');

2-191

2 Alphabetical List

2-192

Create a modifiable, protected model with support for code generation.

Simulink.ModelReference.protect ('mdlref counter',6 '"Mode', ...
'CodeGeneration', 'Modifiable',true, 'Report',6 true);

Get the configuration set for the currently configured target.

cs = Simulink.ProtectedModel.getConfigSet ('mdlref counter')

Get Configuration Set for Specified Target
Get the configuration set for a specified target that the protected model supports.

Load the model and save a local copy.

sldemo mdlref counter
save system('sldemo mdlref counter', 'mdlref counter.slx');

Add a required password for modifying a protected model. If you do not add a password,
you are prompted to set a password when you create a modifiable, protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'mdlref counter', 'password');

Create a modifiable, protected model with support for code generation.

Simulink.ModelReference.protect ('mdlref counter', 'Mode', ...
'CodeGeneration', 'Modifiable',true, 'Report',6 true);

Configure the unprotected model to support a new target.

set param('mdlref counter', 'SystemTargetFile',6 'ert.tlc');
save system('mdlref counter');

Add support to the protected model for the new target. You are prompted for the
modification password.

Simulink.ProtectedModel.addTarget ('mdlref counter');

Verify that support for the new target has been added to the protected model.

st = Simulink.ProtectedModel.getSupportedTargets ('mdlref counter')

Get the configuration set for the added target.

Simulink.ProtectedModel.getConfigSet

cs = Simulink.ProtectedModel.getConfigSet ('mdlref counter', 'ert')

. “Create a Protected Model with Multiple Targets”
. “Use a Protected Model with Multiple Targets”

Input Arguments

protectedModel — Model nhame
string or character vector

Protected model name, specified as a string or character vector.

targetID — Target identifier
string or character vector

Identifier for selected target, specified as a string or character vector. The target
identifier is the root of the Code Generation > System Target file
(SystemTargetFile) parameter. For example, if the System Target file is ert.tlc,
the target identifier is ert.

Output Arguments

configSet — Configuration object
Simulink.ConfigSet

Configuration set, specified as a Simulink.ConfigSet object

See Also

Simulink.ModelReference.protect | Simulink.ProtectedModel.addTarget |
Simulink.ProtectedModel.getCurrentTarget |
Simulink.ProtectedModel.getSupportedTargets |
Simulink.ProtectedModel.removeTarget |
Simulink.ProtectedModel.setCurrentTarget

Topics
“Create a Protected Model with Multiple Targets”

2-193

2 Alphabetical List

“Use a Protected Model with Multiple Targets”

Introduced in R2015a

2-194

Simulink.ProtectedModel.getCurrentTarget

Simulink.ProtectedModel.getCurrentTarget

Get current protected model target

Syntax

currentTarget = Simulink.ProtectedModel.getCurrentTarget (
protectedModel)

Description

currentTarget = Simulink.ProtectedModel.getCurrentTarget (

protectedModel) returns the target identifier for the target that is currently
configured for the protected model. At the start of a MATLAB session, the default
current target is the last target added to the protected model. Otherwise, the current
target is the last target that you used. You can change the current target using the
Simulink.ProtectedModel.setCurrentTarget function.

When building the model, the software changes the target to match the parent if the
currently selected target does not match the target of the parent model.

Examples

Get Currently Configured Target for Protected Model

Add a target to a protected model, and then get the currently configured target for the
protected model.

Load the model and save a local copy.

sldemo mdlref counter
save system('sldemo mdlref counter', 'mdlref counter.slx');

Add a required password for modifying a protected model. If you do not add a password,
you are prompted to set a password when you create a modifiable, protected model.

2-195

2 Alphabetical List

2-196

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'mdlref counter', 'password');

Create a modifiable, protected model with support for code generation.

Simulink.ModelReference.protect('mdlreffcounter','Mode',...
'CodeGeneration', 'Modifiable',true, 'Report', true);

Configure the unprotected model to support a new target.

set param('mdlref counter', 'SystemTargetFile', 'ert.tlc');
save system('mdlref counter');

Add support to the protected model for the new target. You are prompted for the
modification password.

Simulink.ProtectedModel.addTarget ('mdlref counter');

Verify that support for the new target has been added to the protected model.

st = Simulink.ProtectedModel.getSupportedTargets ('mdlref counter')

Get the currently configured target for the protected model.

ct = Simulink.ProtectedModel.getCurrentTarget ('mdlref counter')

. “Create a Protected Model with Multiple Targets”
. “Use a Protected Model with Multiple Targets”

Input Arguments

protectedModel — Model name
string or character vector

Protected model name, specified as a string or character vector.

Output Arguments

currentTarget — Current target
character vector

Simulink.ProtectedModel.getCurrentTarget

Current target for protected model, specified as a character vector.

See Also

Simulink.
Simulink.

Simulink

Simulink.
Simulink.

Topics

ModelReference.
ProtectedModel.

.ProtectedModel.

ProtectedModel.
ProtectedModel.

protect | Simulink.ProtectedModel.addTarget |
getConfigSet |

getSupportedTargets |

removeTarget |

setCurrentTarget

“Create a Protected Model with Multiple Targets”
“Use a Protected Model with Multiple Targets”

Introduced in R2015a

2-197

2 Alphabetical List

2-198

Simulink.ProtectedModel.getSupportedTargets

Get list of targets that protected model supports

Syntax

supportedTargets
protectedModel)

Simulink.ProtectedModel.getSupportedTargets (

Description

supportedTargets = Simulink.ProtectedModel.getSupportedTargets (
protectedModel) returns a list of target identifiers for the code generation targets
supported by the specified protected model. The target identifier sim represents
simulation support.

Examples

Get List of Supported Targets for a Protected Model

Add a target to a protected model, and then get a list of supported targets to verify the
addition of the new target.

Load the model and save a local copy.

sldemo mdlref counter
save system('sldemo mdlref counter', 'mdlref counter.slx');

Add a required password for modifying a protected model. If you do not add a password,
you are prompted to set a password when you create a modifiable, protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'mdlref counter', 'password');

Create a modifiable, protected model with support for code generation.

Simulink.ProtectedModel.getSupportedTargets

Simulink.ModelReference.protect ('mdlref counter',6 'Mode', ...
'CodeGeneration', 'Modifiable',true, 'Report',6 true);

Configure the unprotected model to support a new target.

set param('mdlref counter', 'SystemTargetFile',6 'ert.tlc');
save system('mdlref counter');

Add support to the protected model for the new target. You are prompted for the
modification password.

Simulink.ProtectedModel.addTarget ('mdlref counter');

Verify that support for the new target has been added to the protected model.

st = Simulink.ProtectedModel.getSupportedTargets ('mdlref counter')

. “Create a Protected Model with Multiple Targets”
. “Use a Protected Model with Multiple Targets”

Input Arguments

protectedModel — Model name
string or character vector

Protected model name, specified as a string or character vector.

Output Arguments

supportedTargets — List of target identifiers
cell array of character vectors

List of target identifiers for the targets that the protected model supports, specified as a
cell array of character vectors.

See Also

Simulink.ModelReference.protect | Simulink.ProtectedModel.addTarget |
Simulink.ProtectedModel.getConfigSet |

2-199

2 Alphabetical List

Simulink.ProtectedModel.getCurrentTarget |
Simulink.ProtectedModel.removeTarget |
Simulink.ProtectedModel.setCurrentTarget

Topics
“Create a Protected Model with Multiple Targets”
“Use a Protected Model with Multiple Targets”

Introduced in R2015a

2-200

Simulink.ProtectedModel.open

Simulink.ProtectedModel.open

Open protected model

Syntax

Simulink.ProtectedModel.open (model)
Simulink.ProtectedModel.open (model, type)

Description

Simulink.ProtectedModel.open (model) opens a protected model. If you do not
specify how to view the protected model, the software first tries to open the Web view. If
the Web view is not enabled for the protected model, the software then tries to open the
report. If you did not create a report, the software reports an error.

Simulink.ProtectedModel.open (model, type) opens a protected model using the
specified viewing method. If you specify ‘webview’, the software opens the Web view for
the protected model. If you specify ‘report’, the software opens the protected model
report. If the method that you specify is not enabled, the software reports an error. The
protected model is not opened.

Examples

Open a Protected Model
Open a protected model with no specified method.

Load the model and save a local copy.

sldemo mdlref counter
save system('sldemo mdlref counter', 'mdlref counter.slx');

Create a protected model enabling support for code generation and reporting.

2-201

2 Alphabetical List

2-202

Simulink.ModelReference.protect ('mdlref counter',6 'Mode', ...
'CodeGeneration', 'Report',true);

Open the protected model without specifying how to view it.

Simulink.ProtectedModel.open('mdlref counter')

The protected model does not have Web view enabled, so the protected model report is
opened.

Open a Protected Model Web View
Open a protected model, specifying the Web view.

Load the model and save a local copy.

sldemo mdlref counter
save system('sldemo mdlref counter', 'mdlref counter.slx');

Create a protected model with support for code generation, Web view, and reporting.

Simulink.ModelReference.protect ('mdlref counter',6 'Mode', ...
'CodeGeneration', 'Webview',true, 'Report',true);

Open the protected model and specify that you want to see the Web view.

Simulink.ProtectedModel.open('mdlref counter', 'webview')

The protected model Web view is opened.

Input Arguments

model — Model name
string or character vector

Protected model name, specified as a string or character vector.

type — Open method
‘webview’ | ‘report’

Simulink.ProtectedModel.open

Method for viewing the protected model. If you specify ‘webview’, the software opens the
Web view for the protected model. If you specify ‘report’, the software opens the protected
model report.

See Also

Simulink.ModelReference.protect

Introduced in R2015a

2-203

2 Alphabetical List

2-204

Simulink.ProtectedModel.removeTarget

Remove support for specified target from protected model

Syntax

Simulink.ProtectedModel.removeTarget (protectedModel, targetID)

Description

Simulink.ProtectedModel.removeTarget (protectedModel, targetID) removes
code generation support for the specified target from a protected model. You must
provide the modification password to make this update. Removing a target does not
require access to the unprotected model.

Note You cannot remove the sim target. If you do not want the protected model to
support simulation, use the Simulink.ModelReference.modifyProtectedModel
function to change the protected model mode to ViewOnly.

Examples

Remove Target Support from a Protected Model
Remove a supported target from a protected model.

Load the model and save a local copy.

sldemo mdlref counter
save system('sldemo mdlref counter', 'mdlref counter.slx');

Add a required password for modifying a protected model. If you do not add a password,
you are prompted to set a password when you create a modifiable, protected model.

Simulink.ProtectedModel.removeTarget

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'mdlref counter', 'password');

Create a modifiable, protected model with support for code generation.

Simulink.ModelReference.protect ('mdlref counter',6 'Mode', ...
'CodeGeneration', 'Modifiable',true, 'Report',6 true);

Configure the unprotected model to support a new target.

set param('mdlref counter', 'SystemTargetFile',6 'ert.tlc');
save system('mdlref counter');

Add support to the protected model for the new target. You are prompted for the
modification password.

Simulink.ProtectedModel.addTarget ('mdlref counter');
Verify that support for the new target has been added to the protected model.
st = Simulink.ProtectedModel.getSupportedTargets ('mdlref counter')

Remove support for the ert target from the protected model. You are prompted for the
modification password.

Simulink.ProtectedModel.removeTarget ('mdlref counter',6 'ert');

Verify that support for the ert target has been removed from the protected model.
st = Simulink.ProtectedModel.getSupportedTargets ('mdlref counter')

. “Create a Protected Model with Multiple Targets”

Input Arguments

protectedModel — Model name
string or character vector

Protected model name, specified as a string or character vector.
targetID — Target to be removed

string or character vector

2-205

2 Alphabetical List

2-206

Identifier for target to be removed, specified as a string or character vector.

See Also

Simulink.
Simulink.
Simulink.
Simulink.
Simulink.
Simulink.

Topics

ModelReference.
ModelReference.
ProtectedModel.
ProtectedModel.
ProtectedModel.
ProtectedModel.

modifyProtectedModel |

protect | Simulink.ProtectedModel.addTarget |
getConfigSet |

getCurrentTarget |

getSupportedTargets |

setCurrentTarget

“Create a Protected Model with Multiple Targets”

Introduced in R2015a

Simulink.ProtectedModel.setCurrentTarget

Simulink.ProtectedModel.setCurrentTarget

Configure protected model to use specified target

Syntax

Simulink.ProtectedModel.setCurrentTarget (protectedModel, targetID)

Description

Simulink.ProtectedModel.setCurrentTarget (protectedModel, targetID)
configures the protected model to use the target that the target identifier specifies.

Note If you include the protected model in a model reference hierarchy, the software
tries to change the current target to match the target of the parent model. If the software
cannot match the target of the parent, it reports an error.

Examples

Set Current Target for Protected Model
After you get a list of supported targets, set the current target for a protected model.

Load the model and save a local copy.

sldemo mdlref counter
save system('sldemo mdlref counter', 'mdlref counter.slx');

Add a required password for modifying a protected model. If you do not add a password,
you are prompted to set a password when you create a modifiable, protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify (...
'mdlref counter', 'password');

Create a modifiable, protected model with support for code generation.

2-207

2 Alphabetical List

2-208

Simulink.ModelReference.protect ('mdlref counter',6 'Mode', ...
'CodeGeneration', 'Modifiable',true, 'Report',6 true);

Get a list of targets that the protected model supports.

st = Simulink.ProtectedModel.getSupportedTargets ('mdlref counter')

Configure the unprotected model to support a new target.

set param('mdlref counter', 'SystemTargetFile',6 'ert.tlc');
save system('mdlref counter');

Add support to the protected model for the new target. You are prompted for the
modification password.

Simulink.ProtectedModel.addTarget ('mdlref counter');

Verify that support for the new target has been added to the protected model.

st = Simulink.ProtectedModel.getSupportedTargets ('mdlref counter')

Configure the protected model to use the new target.

Simulink.ProtectedModel.setCurrentTarget ('mdlref counter',6 'ert');

Verify that the current target is correct.

ct = Simulink.ProtectedModel.getCurrentTarget ('mdlref counter')

. “Create a Protected Model with Multiple Targets”
. “Use a Protected Model with Multiple Targets”

Input Arguments

protectedModel — Model name
string or character vector

Protected model name, specified as a string or character vector.

targetID — Target identifier
string or character vector

Identifier for selected target, specified as a string or character vector.

Simulink.ProtectedModel.setCurrentTarget

See Also

Simulink.ModelReference.protect | Simulink.ProtectedModel.addTarget |
Simulink.ProtectedModel.getConfigSet |
Simulink.ProtectedModel.getCurrentTarget |

Simulink.ProtectedModel.getSupportedTargets |
Simulink.ProtectedModel.removeTarget

Topics
“Create a Protected Model with Multiple Targets”
“Use a Protected Model with Multiple Targets”

Introduced in R2015a

2-209

2 Alphabetical List

2-210

slConfigUlGetVal

Return current value for custom target configuration option

Syntax

value = slConfigUIGetVal (hDlg,hSrc, 'OptionName')

Input Arguments

hDlg

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

hSrc
Handle created in the context of a SelectCallback function and used by the

System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

'OptionName'

Quoted name of the TLC variable defined for a custom target configuration option.

Output Arguments

Current value of the specified option. The data type of the return value depends on the
data type of the option.

Description

The s1ConfigUIGetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target is selected in the
System Target File Browser in the Configuration Parameters dialog box. You use
slConfigUIGetVal to read the current value of a specified target option.

slConfigUIGetVal

Examples

In the following example, the s1ConfigUIGetVal function returns the value of the
Configuration Parameters > Code Generation > Interface > Advanced
parameters > Terminate function required option.

function usertarget selectcallback (hDlg,hSrc)

disp(['*** Select callback triggered:',sprintf('\n'),
' Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was ', .
slConfigUIGetVal (hDlg,hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal (hDlg,hSrc, 'IncludeMdlTerminateFcn', 'off"');
slConfigUISetEnabled (hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also

slConfigUISetEnabled | slConfigUISetVal

Topics
“Define and Display Custom Target Options”
“Custom Target Optional Features”

Introduced in R2006b

2-211

2 Alphabetical List

2-212

slConfigUISetEnabled

Enable or disable custom target configuration option

Syntax

slConfigUISetEnabled (hDlg, hSrc, 'OptionName', true)

slConfigUISetEnabled (hDlg, hSrc, 'OptionName', false)

Arguments

hDlg

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

hSrc
Handle created in the context of a SelectCallback function and used by the

System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

'OptionName'

Quoted name of the TLC variable defined for a custom target configuration option.
true

Specifies that the option should be enabled.
false

Specifies that the option should be disabled.

Description

The s1ConfigUISetEnabled function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target is selected in the
System Target File Browser in the Configuration Parameters dialog box. You use
slConfigUISetEnabled to enable or disable a specified target option.

slConfigUISetEnabled

If you use this function to disable a parameter that is represented in the Configuration
Parameters dialog box, the parameter appears greyed out in the dialog context.

Examples

In the following example, the s1ConfigUISetEnabled function disables the
Configuration Parameters > Code Generation > Interface > Advanced
parameters > Terminate function required option.

function usertarget_ selectcallback (hDlg,hSrc)

disp(['*** Select callback triggered:',6sprintf('\n'),
' Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was ', .
slConfigUIGetVal (hDlg,hSrc, 'IncludeMdlTerminateFcn')]) ;

slConfigUISetVal (hDlg,hSrc, 'IncludeMdlTerminateFcn', 'off"');
slConfigUISetEnabled (hDlg, hSrc, 'IncludeMdlTerminateFcn', false) ;

See Also

slConfigUIGetVal | slConfigUISetVval

Topics
“Define and Display Custom Target Options’
“Custom Target Optional Features”

)

Introduced in R2006b

2-213

2 Alphabetical List

2-214

slConfigUISetVal

Set value for custom target configuration option

Syntax

slConfigUISetVal (hDlg,hSrc, 'OptionName', OptionValue)

Arguments

hDlg

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

hSrc

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

'OptionName'
Quoted name of the TLC variable defined for a custom target configuration option.
OptionValue

Value to be set for the specified option.

Description

The s1ConfigUISetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target is selected in the
System Target File Browser in the Configuration Parameters dialog box. You use
slConfigUISetVal to set the value of a specified target option.

slConfigUISetVal

Examples

In the following example, the s1ConfigUISetVal function sets the value 'off' for the
Configuration Parameters > Code Generation > Interface > Advanced
parameters > Terminate function required option.

function usertarget selectcallback (hDlg,hSrc)

disp(['*** Select callback triggered:',sprintf('\n'),
' Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was ', .
slConfigUIGetVal (hDlg,hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal (hDlg,hSrc, 'IncludeMdlTerminateFcn', 'off"');
slConfigUISetEnabled (hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also

slConfigUIGetVal | slConfigUISetEnabled

Topics
“Define and Display Custom Target Options”
“Custom Target Optional Features”

Introduced in R2006b

2-215

2 Alphabetical List

2-216

switchTarget

Select target for model configuration set

Syntax

switchTarget (myConfigObj, systemTargetFile, [])
switchTarget (myConfigObj, systemTargetFile, targetOptions)

Description

switchTarget (myConfigObj, systemTargetFile, []) changes the selected system
target file for the active configuration set.

switchTarget (myConfigObj, systemTargetFile, targetOptions) sets the
configuration parameters specified by targetOptions.

Examples

Get ConfigSet, Default Options, and Switch Target

This example shows how to get the active configuration set for model, and change the
system target file for the configuration set.

% Get configuration set for model
myConfigObj = getActiveConfigSet (model) ;
% Switch system target file
switchTarget (myConfigObj, 'ert.tlc', []);

Get ConfigSet, Set Options, Switch Target

This example shows how to get the active configuration set for the current model (gcs),
set various targetOptions, then change the system target file selection.

switchTarget

% Get configuration set for current model
myConfigObj=getActiveConfigSet (gcs) ;

% Specify target options

targetOptions.TLCOptions = '-aVarName=1"';
targetOptions.MakeCommand = 'make rtw';
targetOptions.Description = 'my target';
targetOptions.TemplateMakefile = 'grt default tmf';

% Define a system target file
targetSystemFile="'grt.tlc';

% Switch system target file
switchTarget (myConfigObj, targetSystemFile, targetOptions);

Use targetOptions to verify values (optional).

% Verify values (optional)

targetOptions
TLCOptions: '-—-aVarName=1'
MakeCommand: 'make rtw'
Description: 'my target'

TemplateMakefile: 'grt default tmf'

Get ConfigSet, Set Options for MSVC Solution Build, Switch Target to MSVC ERT

This example shows how to get the active configuration set for model, then change the
system target file to the ERT Create Visual C/C++ Solution File for Embedded Coder.

model="'rtwdemo rtwintro';
open_ system(model) ;

% Get configuration set for model
myConfigObj = getActiveConfigSet (model) ;

% Specify target options for MSVC build
targetOptions.MakeCommand = 'make rtw';
targetOptions.Description = .

'Create Visual C/C++ Solution File for Embedded Coder';
targetOptions.TemplateMakefile = 'RTW.MSVCBuild';

2-217

2 Alphabetical List

% Switch system target file
switchTarget (myConfigObj, 'ert.tlc',targetOptions) ;

Get ConfigSet, Set Options for Toolchain Build, and Switch Target

Use options to select default ERT target file, instead of
set param(model, 'SystemTargetFile', 'ert.tlc').

% use switchTarget to select toolchain build of defaul ERT target
model="'rtwdemo rtwintro';
open_system(model) ;

% Get configuration set for model
myConfigObj = getActiveConfigSet (model) ;

% Specify target options for toolchain build approach
targetOptions.MakeCommand = '';
targetOptions.Description = 'Embedded Coder';
targetOptions.TemplateMakefile = '';

% Switch system target file
switchTarget (myConfigObj, 'ert.tlc',targetOptions) ;

Input Arguments

myConfigObj — Configuration set object
object

A configuration set object of Simulink.ConfigSet or configuration reference object of
Simulink.ConfigSetRef. Call getActiveConfigSet to get the configuration set
object.

Example: myConfigObj = getActiveConfigSet (model) ;

systemTargetFile — Name of system target file
character vector

Specify the name of the system target file (such as ert.tlc for Embedded Coder or
grt.tlc for Simulink Coder) as the name appears in the System Target File
Browser.

2-218

switchTarget

Example: systemTargetFile = 'ert.tlc';

targetOptions — Structure with field values that provide configuration parameter options
struct

Structure with fields that define a code generation target options. You can choose to
modify certain configuration parameters by filling in values in a structure field. If you do
not want to use options, specify an empty structure ([]).

Field Values in targetOptions

Specify the structure field values of the targetOptions. For no options, specify an
empty structure ([]).

Example: targetOptions = [];

TemplateMakefile — Character vector specifying file name of template makefile
character vector

Example: targetOptions.TemplateMakefile = 'RTW.MSVCBuild';
TLCOptions — Character vector specifying TLC argument

character vector

Example: targetOptions.TLCOptions = '-aVarName=1"';

MakeCommand — Character vector specifying make command MATLAB language file
character vector

Example: targetOptions.MakeCommand = 'make rtw';

Description — Character vector specifying description of the system target file
character vector

Example: targetOptions.Description = 'Create Visual C/C++ Solution
File for Embedded Coder';

See Also

Simulink.ConfigSet | Simulink.ConfigSetRef | getActiveConfigSet

2-219

2 Alphabetical List

Topics

“Select a System Target File Programmatically”
“Configure a System Target File”

“Set Target Language Compiler Options”

Introduced in R2009b

2-220

tic

tic

Invoke Target Language Compiler to convert model description file to generated code

Syntax

tlc [-options] [file]

Description

tlc [-options] [file] invokes the Target Language Compiler (TLC) from the
command prompt. The TLC converts the model description file, model.rtw (or similar
files), into target-specific code or text. Typically, you do not call this command because
the build process automatically invokes the Target Language Compiler when generating
code. For more information, see “Introduction to the Target Language Compiler”.

Note This command is used only when invoking the TLC separately from the build
process. You cannot use this command to initiate code generation for a model.

You can change the default behavior by specifying one or more compilation options as
described in “Options” on page 2-221

Options

You can specify one or more compilation options with each t1c command. Use spaces to
separate options and arguments. TLC resolves options from left to right. If you use
conflicting options, the right-most option prevails. The t1c options are:

+ “r Specify Simulink Coder filename” on page 2-222

+ “.v Specify verbose level” on page 2-222

+ “.I Specify path to local include files” on page 2-222

+ “.m Specify maximum number of errors” on page 2-222

2-221

2 Alphabetical List

2-222

* “0O Specify the output file path” on page 2-223

+ “.d[alc|n]o] Invoke debug mode” on page 2-223

+ “.a Specify parameters” on page 2-223

* “.p Print progress” on page 2-223

+ “Ilint Performance checks and runtime statistics” on page 2-223
+ “x0 Parse only” on page 2-224

-r Specify Simulink Coder filename

-r file_name

Specify the filename that you want to translate.

-v Specify verbose level
-v number

Specify a number indicating the verbose level. If you omit this option, the default value is
one.

-| Specify path to local include files
-1 path

Specify a folder path to local include files. The TLC searches this path in the order
specified.

-m Specify maximum number of errors
-m number

Specify the maximum number of errors reported by the TLC prior to terminating the
translation of the . t1c file.

If you omit this option, the default value is five.

tic

-O Specify the output file path
-0 path
Specify the folder path to place output files.

If you omit this option, TLC places output files in the current folder.

-d[a|c|n|o] Invoke debug mode
-da execute any %assert directives
-dc invoke the TLC command line debugger

-dn produce log files, which indicate those lines hit and those lines missed during
compilation.

-do disable debugging behavior

-a Specify parameters
-a identifier = expression

Specify parameters to change the behavior of your TLC program. For example, this
option i1s used by the code generator to set inlining of parameters or file size limits.

-p Print progress
-p number

Print a '." indicating progress for every number of TLC primitive operations executed.

-lint Performance checks and runtime statistics
-lint

Perform simple performance checks and collect runtime statistics.

2-223

2 Alphabetical List

-xO Parse only
-x0

Parse only a TLC file; do not execute it.

Introduced in R2009a

2-224

updateFilePathsAndExtensions

updateFilePathsAndExtensions

Update files in model build information with missing paths and file extensions

Syntax

updateFilePathsAndExtensions (buildinfo, extensions)

Description

updateFilePathsAndExtensions (buildinfo, extensions) specifies the file name
extensions (file types) to include in search and update processing.

Using paths from the build information, the updateFilePathsAndExtensions
function checks whether file references in the build information require an updated path
or file extension. Use this function to:

* Maintain build information for a toolchain that requires the use of file extensions.

+ Update multiple customized instances of build information for a given model.

If you use updateFilePathsAndExtensions, you call it after you add files to the build

information. This approach minimizes the potential performance impact of the required
disk I/0.

Examples

Update File Paths and Extensions in Build Information

In your working folder, create the folder path etcproj/etc, add files etc.c, testl.c,
and test2.c to the folder etc. For this example, the working folder is w: \work
\BuildInfo. From the working folder, update build information myModelBuildInfo
with missing paths or file extensions.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths (myModelBuildInfo, fullfile (pwd,

2-225

2 Alphabetical List

2-226

'etcproj', '/etc'), "test');
addSourceFiles (myModelBuildInfo, {'etc' 'testl'

'test2'},'', 'test');
before = getSourceFiles (myModelBuildInfo, true, true);
>> before
before =

'"\etc' '"\testl' '"\test2'

updateFilePathsAndExtensions (myModelBuildInfo) ;

after = getSourceFiles (myModelBuildInfo, true, true);

>> after{:}

ans =
'w:\work\BuildInfo\etcproj\etc\etc.c'
ans =
'w:\work\BuildInfo\etcproj\etc\testl.c'
ans =
'w:\work\BuildInfo\etcproj\etc\test2.c'
Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

extensions — File name extensions to include in search and update processing
'.c' (default) | cell array

The extensions argument specifies the file name extensions (file types) to include in
search and update processing. The function checks files and updates paths and
extensions based on the order in which you list the extensions in the cell array. For

updateFilePathsAndExtensions

example, if you specify {'.c' '.cpp'} and a folder contains myfile.c and
myfile.cpp, an instance of myfile is updated tomyfile.c.

Example: '.c' '.cpp'

See Also

addIncludeFiles | addIncludePaths | addSourceFiles | addSourcePaths |
updateFileSeparator

Topics
“Customize Post-Code-Generation Build Processing”

Introduced in R2006a

2-227

2 Alphabetical List

2-228

updateFileSeparator

Update file separator character for file lists in model build information

Syntax

updateFileSeparator (buildinfo, separator)

Description

updateFileSeparator (buildinfo, separator) changes instances of the current file
separator (/ or \) in the model build information to the specified file separator.

The default value for the file separator matches the value returned by the MATLAB
command filesep. For template makefile (TMF) approach builds, you can override the
default by defining a separator with the MAKEFILE FILESEP macro in the template
makefile (see “Cross-Compile Code Generated on Microsoft Windows”. If the
GenerateMakefile parameter is set, the code generator overrides the default separator
and updates the model build information after evaluating the PostCodeGenCommand
configuration parameter.

Examples

Update File Separator in Build Information

Update object myModel1BuildInfo to apply the Windows® file separator.

updateFileSeparator

myModelBuildInfo = RTW.BuildInfo;
updateFileSeparator (myModelBuildInfo, '\");

Input Arguments

buildinfo — Name of build information object returned by RTW.BuildInfo
object

separator — File separator character for path specifications in the build information

v\v | T / T

The separator argument specifies the file separator \ (Windows) or / (UNIX®) to use in
file path specifications in the build information.

Example: "\

See Also

addIncludeFiles | addIncludePaths | addSourceFiles | addSourcePaths |
updateFilePathsAndExtensions

Topics
“Customize Post-Code-Generation Build Processing”
“Cross-Compile Code Generated on Microsoft Windows”

Introduced in R2006a

2-229

Blocks — Alphabetical List

3 Blocks — Alphabetical List

Async Interrupt

Generate Versa Module Eurocard (VME) interrupt service routines (ISRs) that execute

downstream subsystems or Task Sync blocks

Library: Simulink Coder / Asynchronous / Interrupt
Templates MWSimIRT IRCM

Description

For each specified VME interrupt level in the example RTOS (VxWorks®), the Async

Interrupt block generates an interrupt service routine (ISR) that calls one of the
following:

* A function call subsystem
* A Task Sync block

+ A Stateflow chart configured for a function call input event

Note You can use the blocks in the vx1ib1 library (Async Interrupt and Task Sync) for

simulation and code generation. These blocks provide starting point examples to help you
develop custom blocks for your target environment.

Assumptions and Limitations

* The block supports VME interrupts 1 through 7.

* The block uses these RTOS (VxWorks) system calls:
sysIntEnable
sysIntDisable
intConnect
intLock
intUnlock
tickGet

Async Interrupt

Performance Considerations

Execution of large subsystems at interrupt level can have a significant impact on
interrupt response time for interrupts of equal and lower priority in the system. Usually,
it is best to keep ISRs as short as possible. Connect only function-call subsystems that
contain a few blocks to an Async Interrupt block.

A better solution for large subsystems is using the Task Sync block to synchronize the
execution of the function-call subsystem to an RTOS task. Place the Task Sync block
between the Async Interrupt block and the function-call subsystem. The Async Interrupt
block then uses the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately from interrupt
level. The example RTOS (VxWorks) then schedules and runs the task. See the
description of the Task Sync block.

Ports

Input

Input — Simulated interrupt source
scalar

A simulated interrupt source.

Output Arguments

Output — Control signal
scalar

Control signal for a:

* Function-call subsystem
+ Task Sync block

+ Stateflow chart configured for a function call input event

3-3

3 Blocks — Alphabetical List

3-4

Parameters

VME interrupt number (s) — VME interrupt numbers for the interrupts to be installed
[1 2] (default) | integer array

An array of VME interrupt numbers for the interrupts to be installed. The valid range is
1..7.

The width of the Async Interrupt block output signal corresponds to the number of VME
interrupt numbers specified.

Note A model can contain more than one Async Interrupt block. However, if you use
more than one Async Interrupt block, do not duplicate the VME interrupt numbers
specified in each block.

VME interrupt vector offset(s) — Interrupt vector offset numbers corresponding to
the VME interrupt numbers
[192 193] (default) | integer array

An array of unique interrupt vector offset numbers corresponding to the VME interrupt
numbers entered in the VME interrupt number(s) field. The Stateflow software passes
the offsets to the RTOS (VxWorks) call intConnect (INUM TO IVEC (offset),...).

Simulink task priority (s) — Priority of downstream blocks
[10 11] (default) | integer array

The Simulink priority of downstream blocks. Each output of the Async Interrupt block
drives a downstream block (for example, a function-call subsystem). Specify an array of
priorities corresponding to the VME interrupt numbers that you specify for VME
interrupt number(s).

The Simulink task priority values are required to generate a rate transition code (see
“Rate Transitions and Asynchronous Blocks”). Simulink task priority values are also
required to maintain absolute time integrity when the asynchronous task must obtain
real time from its base rate or its caller. The assigned priorities typically are higher than
the priorities assigned to periodic tasks.

Async Interrupt

Note The Simulink software does not simulate asynchronous task behavior. The task
priority of an asynchronous task is for code generation purposes only and is not honored
during simulation.

Preemption flag(s); preemptable-1; non-preemptable-0 — Selects preemption
[0 1] (default) | integer array

Set this option to 1 if an output signal of the Async Interrupt block drives a Task Sync
block.

Higher priority interrupts can preempt lower priority interrupts in the example RTOS
(VxWorks). To lock out interrupts during the execution of an ISR, set the pre-emption
flag to 0. This setting causes generation of intLock () and intUnlock () calls at the
beginning and end of the ISR code. Use interrupt locking carefully, as it increases the
interrupt response time of the system for interrupts at the intLockLevelSet () level
and below. Specify an array of flags corresponding to the VME interrupt numbers
entered in the VME interrupt number(s) field.

Note The number of elements in the arrays specifying VME interrupt vector offset(s)
and Simulink task priority must match the number of elements in the VME
interrupt number(s) array.

Manage own timer — Select timer manager
on (default) | off

If selected, the ISR generated by the Async Interrupt block manages its own timer by
reading absolute time from the hardware timer. Specify the size of the hardware timer
with the Timer size option.

Timer resolution (seconds) — Resolution of ISR timer
1/60 (default)

The resolution of the ISRs timer. ISRs generated by the Async Interrupt block maintain
their own absolute time counters. By default, these timers obtain their values from the
RTOS (VxWorks) kernel by using the tickGet call. The Timer resolution field
determines the resolution of these counters. The default resolution is 1/60 second. The
tickGet resolution for your board support package (BSP) can be different. Determine
the tickGet resolution for your BSP and enter it in the Timer resolution field.

3 Blocks — Alphabetical List

If you are targeting an RTOS other than the example RTOS (VxWorks), replace the
tickGet call with an equivalent call to the target RTOS. Or, generate code to read the
timer register on the target hardware. For more information, see “Timers in
Asynchronous Tasks” and “Async Interrupt Block Implementation”.

Timer size — Number of bits to store the clock tick
32bits (default) | 16bits | 8bits | auto

The number of bits to store the clock tick for a hardware timer. The ISR generated by the
Async Interrupt block uses the timer size when you select Manage own timer. The size
can be 32bits (the default), 16bits, 8bits, or auto. If you select auto, the code
generator determines the timer size based on the settings of Application lifespan
(days) and Timer resolution.

By default, timer values are stored as 32-bit integers. When Timer size is auto, you can
indirectly control the word size of the counters by setting the Application lifespan
(days) option. If you set Application lifespan (days) to a value that is too large for the
code generator to handle as a 32-bit integer of the specified resolution, the code generator
uses a second 32-bit integer to address overflows.

For more information, see “Control Memory Allocation for Time Counters”. See also
“Timers in Asynchronous Tasks”.

Enable simulation input — Select add simulation input port
on (default) | off

If selected, the Simulink software adds an input port to the Async Interrupt block. This
port is for simulation only. Connect one or more simulated interrupt sources to the
simulation input.

Note Before generating code, consider removing blocks that drive the simulation input to
prevent the blocks from contributing to the generated code. Alternatively, you can use
the Environment Controller block, as explained in “Dual-Model Approach: Code
Generation”. If you use the Environment Controller block, the sample times of driving
blocks contribute to the sample times supported in the generated code.

Async Interrupt

Model Examples

See Also
Task Sync

Topics
“Asynchronous Events”
“Asynchronous Events”

Introduced in R2006a

3-7

3

Blocks — Alphabetical List

3-8

Asynchronous Task Specification

Specify priority of asynchronous task represented by referenced model triggered by
asynchronous interrupt
Library: Simulink Coder / Asynchronous

Description

The Asynchronous Task Specification block specifies parameters, such as the task
priority, of an asynchronous task represented by a function-call subsystem with a trigger
from an asynchronous interrupt. Use this block to control scheduling of function-call
subsystems with triggers from asynchronous events. You control the scheduling by
assigning a priority to each function-call subsystem within a referenced model.

To use this block, follow the procedure in “Convert an Asynchronous Subsystem into a
Model Reference”.

Observe in the figure:

* The block must reside in a referenced model between a root-level Inport block and a
function-call subsystem. The Asynchronous Task Specification block must
immediately follow and connect directly to the Inport block.

* The Inport block must receive an interrupt signal from an Async Interrupt block that
is in the parent model.

* The Inport block must be configured to receive and send function-call trigger signals.

Asynchronous Task Specification

4 ex_async_ref_model N
IRQ1 {in1
O
Async Interrupt Out1 »
In2 [[m outt
N A Rate Transition2
@_’_}Ei_j: Model
In1 m m{ / AN
Rate Transiti;ﬂﬁ \
Y AN
Y AN
y AN
y N
y N
y; AN
N
(1 —mw P10
In1
Asynchronous Task
Specification v
function()
@ Pint Out1
In2 Out1
Function-Call
Subsystem

Ports

Input

Port_1 — Interrupt input signal
scalar

Interrupt input signal received from a root-level Inport block.

Output

Port_1 — Interrupt signal with priority

scalar

3 Blocks — Alphabetical List

Interrupt signal with specified task priority that triggers a function-call subsystem.

Parameters

Task priority — Priority of asynchronous task that calls function-call subsystem
10 (default)

Specify an integer or [] as the priority of the asynchronous task that calls the connected
function-call subsystem. The priority must be a value that generates relevant rate
transition behaviors.

+ If you specify an integer, it must match the priority value of the interrupt signal
initiator in the parent model.

+ If you specify [], the priority does not have to match the priority of the interrupt
signal initiator in the top model. The rate transition algorithm is conservative (not
optimized). The priority is unknown but static.

Consider the following model.

lﬁut}s\,‘stekﬁ
20 Hz ISR Sim Copy

Out | SimIRQ IRQ1 p{in1 Cutt b H (1
| Coder - il]]]]]]] Outt
Environment Async Interrupt \ y Unprotected RT

Controller

medel

The referenced model has the following content.

3-10

Asynchronous Task Specification

W Subsystem * =1 E=R
File Edit Wiew Simulation Format Teools Help
O =EH& i | =2 » 10.0
CO-+ ro oo |
In1
" Asynchronous Task *0
ificati f—call
Specification —Cal Out—@
Outl
Count
Ri|100% ode3d

If the Task priority parameter is set to 10, the Async Interrupt block in the parent
model must also have a priority of 10. If the parameter is set to [], the priority of the
Async Interrupt block can be a value other than 10.

Model Examples

See Also

Blocks
Function-Call Subsystem | Inport

Topics

“Asynchronous Events”

“Spawn and Synchronize Execution of RTOS Task”

“Pass Asynchronous Events in RTOS as Input To a Referenced Model”
“Convert an Asynchronous Subsystem into a Model Reference”

“Rate Transitions and Asynchronous Blocks”

“Asynchronous Support”

“Asynchronous Events”
“Model Referencing” (Simulink)

3-11

3 Blocks — Alphabetical List

Introduced in R2011a

3-12

Generated S-Function

Generated S-Function

Represent model or subsystem as generated S-function code
Library: Simulink Coder / S-Function Target

Description

An instance of the Generated S-Function block represents code that the code generator
produces from its S-function system target file for a model or subsystem. For example,
you extract a subsystem from a model and build a Generated S-Function block from it by
using the S-function target. This mechanism can be useful for:

+ Converting models and subsystems to application components

* Reusing models and subsystems

* Optimizing simulation—often, an S-function simulates more efficiently than the
original model

For details on how to create a Generated S-Function block from a subsystem, see “Create
S-Function Blocks from a Subsystem”.

Requirements

+ The S-Function block must perform identically to the model or subsystem from which
1t was generated.

+ Before creating the block, explicitly specify Inport block signal attributes, such as
signal widths or sample times. The sole exception to this rule concerns sample times,
as described in “Sample Time Propagation in Generated S-Functions”.

+ Set the solver parameters of the Generated S-Function block to be the same as the
parameters of the original model or subsystem. The generated S-function code
operates identically to the original subsystem (for an exception to this rule, see
“Choose a Solver Type”).

3-13

3 Blocks — Alphabetical List

Ports

Input

Input — S-function input
varies

See requirements.

Output Arguments

Output — S-function output
varies

See requirements.

Parameters

Generated S-function name (model_sf) — Name of S-function
model_sf (default) | character vector

The name of the generated S-function. The code generator derives the name by
appending sf to the name of the model or subsystem from which the block is generated.

Show module list — Select display module list
off (default) | on

If selected, displays modules generated for the S-function.

Model Examples

See Also

Topics

“Generate S-Function from Subsystem”

3-14

Generated S-Function

“Create S-Function Blocks from a Subsystem”

Introduced in R2011b

3-15

3 Blocks — Alphabetical List

3-16

Model Header

Specify external header code

Model
Header

Description

For a model that includes the Model Header block, the code generator adds external code
that you specify to the header file (model.h) that it generates. You can specify code for
the code generator to add near the top and bottom of the header file.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters
Top of Model Header — Code to add near top of generated header file

Specify code that you want the code generator to add near the top of the header file for
the model. The code generator places the code in the section labeled user code (top
of header file).

Bottom of Model Header — Code to add at bottom of generated header file

Specify code that you want the code generator to add at the bottom of the header file for
the model. The code generator places the code in the section labeled user code
(bottom of header file).

See Also

Model Source | System Disable | System Outputs | System Update | System
Derivatives | System Enable | System Initialize | System Start | System Terminate

Model Header

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-17

3 Blocks — Alphabetical List

3-18

Model Source

Specify external source code

Description

For a model that includes the Model Source block, the code generator adds external code
that you specify to the source file (model.c or model.cpp) that it generates. You can
specify code for the code generator to add near the top and bottom of the source file.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters
Top of Model Header — Code to add near top of generated source file

Specify code that you want the code generator to add near the top of the source file for
the model. The code generator places the code in the section labeled user code (top
of source file).

Bottom of Model Header — Code to add at bottom of generated source file

Specify code that you want the code generator to add at the bottom of the source file for
the model. The code generator places the code in the section labeled user code
(bottom of source file).

Example

See “Add External Code to Generated Start Function”.

Model Source

See Also

Model Header | System Disable | System Outputs | System Update | System
Derivatives | System Enable | System Initialize | System Start | System Terminate

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-19

3 Blocks — Alphabetical List

Protected RT

Handle transfer of data between blocks operating at different rates and maintain data
integrity

|

A—H=p
m m

Library

VxWorks (vx1ibl)

Description

The Protected RT block is a Rate Transition block that is preconfigured to maintain data
integrity during data transfers. For more information, see Rate Transition in the
Simulink Reference.

Introduced in R2006a

3-20

System Derivatives

System Derivatives

Specify external system derivative code

Description

For a model or nonvirtual subsystem that includes the System Derivatives block and a
block that computes continuous states, the code generator adds external code, which you
specify, to the SystemDerivatives function that it generates. You can specify code for
the code generator to add to the declaration, execution, and exit sections of the function
code.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters

System Derivatives Function Declaration Code — Code to add to the declaration
section of the generated function

Specify code that you want the code generator to add to the declaration section of the
SystemDerivatives function for the model or subsystem.

System Derivatives Function Execution Code — Code to add to the execution
section of the generated function

Specify code that you want the code generator to add to the execution section of the
SystemDerivatives function for the model or subsystem.

System Derivatives Function Exit Code — Code to add to the exit section of the
generated function

3-21

3 Blocks — Alphabetical List

Specify code that you want the code generator to add to the exit section of the
SystemDerivatives function for the model or subsystem.

See Also

Model Header | Model Source | System Initialize | System Disable | System Enable |
System Outputs | System Start | System Terminate | System Update

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-22

System Disable

System Disable

Specify external system disable code

Description

For a model or nonvirtual subsystem that includes the System Disable block and a block
that uses a SystemDisable function, the code generator adds external code, which you
specify, to the SystemDisable function that it generates. You can specify code for the
code generator to add to the declaration, execution, and exit sections of the function code.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters

System Disable Function Declaration Code — Code to add to the declaration
section of the generated function

Specify code that you want the code generator to add to the declaration section of the
SystemDisable function for the model or subsystem.

System Disable Function Execution Code — Code to add to the execution section
of the generated function

Specify code that you want the code generator to add to the execution section of the
SystemDisable function for the model or subsystem.

System Disable Function Exit Code — Code to add to the exit section of the
generated function

Specify code that you want the code generator to add to the exit section of the
SystemDisable function for the model or subsystem.

3-23

3 Blocks — Alphabetical List

See Also

Model Header | Model Source | System Initialize | System Derivatives | System Enable
| System Outputs | System Start | System Terminate | System Update

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-24

System Enable

System Enable

Specify external system enable code

Description

For a model or nonvirtual subsystem that includes the System Enable block and a block
that uses a SystemEnable function, the code generator adds external code, which you
specify, to the SystemEnable function that it generates. You can specify code for the
code generator to add to the declaration, execution, and exit sections of the function code.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters

System Enable Function Declaration Code — Code to add to the declaration
section of the generated function

Specify code that you want the code generator to add to the declaration section of the
SystemEnable function for the model or subsystem.

System Enable Function Execution Code — Code to add to the execution section of
the generated function

Specify code that you want the code generator to add to the execution section of the
SystemEnable function for the model or subsystem.

System Enable Function Exit Code — Code to add to the exit section of the
generated function

Specify code that you want the code generator to add to the exit section of the
SystemEnable function for the model or subsystem.

3-25

3 Blocks — Alphabetical List

See Also

Model Header | Model Source | System Initialize | System Derivatives | System
Disable | System Outputs | System Start | System Terminate | System Update

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-26

System Initialize

System Initialize

Specify external system initialization code

Description

For a model or nonvirtual subsystem that includes the System Initialize block and a
block that uses a SystemInitialize function, the code generator adds external code,
which you specify, to the SystemInitialize function that it generates. You can specify
code for the code generator to add to the declaration, execution, and exit sections of the
function code.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters

System Initialize Function Declaration Code — Code to add to the declaration
section of the generated function

Specify code that you want the code generator to add to the declaration section of the
SystemInitialize function for the model or subsystem.

System Initialize Function Execution Code — Code to add to the execution
section of the generated function

Specify code that you want the code generator to add to the execution section of the
SystemInitialize function for the model or subsystem.

System Initialize Function Exit Code — Code to add to the exit section of the
generated function

3-27

3 Blocks — Alphabetical List

Specify code that you want the code generator to add to the exit section of the
SystemInitialize function for the model or subsystem.

See Also

Model Header | Model Source | System Enable | System Derivatives | System Disable
| System Outputs | System Start | System Terminate | System Update

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-28

System Outputs

System Outputs

Specify external system outputs code

Description

For a model or nonvirtual subsystem that includes the System Outputs block and a block
that uses a SystemOutputs function, the code generator adds external code, which you
specify, to the SystemOutputs function that it generates. You can specify code for the
code generator to add to the declaration, execution, and exit sections of the function code.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters

System Outputs Function Declaration Code — Code to add to the declaration
section of the generated function

Specify code that you want the code generator to add to the declaration section of the
SystemOutputs function for the model or subsystem.

System Outputs Function Execution Code — Code to add to the execution section
of the generated function

Specify code that you want the code generator to add to the execution section of the
SystemOutputs function for the model or subsystem.

System Outputs Function Exit Code — Code to add to the exit section of the
generated function

Specify code that you want the code generator to add to the exit section of the
SystemOutputs function for the model or subsystem.

3-29

3 Blocks — Alphabetical List

See Also

Model Header | Model Source | System Enable | System Derivatives | System Disable
| System Initialize | System Start | System Terminate | System Update

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-30

System Start

System Start

Specify external system startup code

Description

For a model or nonvirtual subsystem that includes the System Start block and a block
that uses a SystemStart function, the code generator adds external code, which you
specify, to the SystemStart function that it generates. You can specify code for the code
generator to add to the declaration, execution, and exit sections of the function code.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters

System Start Function Declaration Code — Code to add to the declaration section
of the generated function

Specify code that you want the code generator to add to the declaration section of the
SystemStart function for the model or subsystem.

System Start Function Execution Code — Code to add to the execution section of
the generated function

Specify code that you want the code generator to add to the execution section of the
SystemStart function for the model or subsystem.

System Start Function Exit Code — Code to add to the exit section of the generated
function

Specify code that you want the code generator to add to the exit section of the
SystemStart function for the model or subsystem.

3-31

3 Blocks — Alphabetical List

See Also

Model Header | Model Source | System Enable | System Terminate | System
Derivatives | System Disable | System Initialize | System Outputs | System Update

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-32

System Terminate

System Terminate

Specify external system termination code

Description

For a model or nonvirtual subsystem that includes the System Terminate block and a
block that uses a SystemTerminate function, the code generator adds external code,
which you specify, to the SystemTerminate function that it generates. You can specify
code for the code generator to add to the declaration, execution, and exit sections of the
function code.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters

System Terminate Function Declaration Code — Code to add to the declaration
section of the generated function

Specify code that you want the code generator to add to the declaration section of the
SystemTerminate function for the model or subsystem.

System Disable Terminate Execution Code — Code to add to the execution section
of the generated function

Specify code that you want the code generator to add to the execution section of the
SystemTerminate function for the model or subsystem.

System Disable Terminate Exit Code — Code to add to the exit section of the
generated function

3-33

3 Blocks — Alphabetical List

Specify code that you want the code generator to add to the exit section of the
SystemTerminate function for the model or subsystem.

See Also

Model Header | Model Source | System Enable | System Start | System Derivatives |
System Disable | System Initialize | System Outputs | System Update

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-34

System Update

System Update

Specify external system update code

Description

For a model or nonvirtual subsystem that includes the System Update block and a block
that uses a SystemUpdate function, the code generator adds external code, which you
specify, to the SystemUpdate function that it generates. You can specify code for the
code generator to add to the declaration, execution, and exit sections of the function code.

Note If you include this block in a referenced model, the code generator ignores the block
for simulation target builds, but processes the block for other system target files.

Parameters

System Update Function Declaration Code — Code to add to the declaration
section of the generated function

Specify code that you want the code generator to add to the declaration section of the
SystemUpdate function for the model or subsystem.

System Update Function Execution Code — Code to add to the execution section of
the generated function

Specify code that you want the code generator to add to the execution section of the
SystemUpdate function for the model or subsystem.

System Update Function Exit Code — Code to add to the exit section of the
generated function

Specify code that you want the code generator to add to the exit section of the
SystemUpdate function for the model or subsystem.

3-35

3 Blocks — Alphabetical List

See Also

Model Header | Model Source | System Enable | System Start | System Derivatives |
System Disable | System Initialize | System Outputs | System Terminate

Topics
“Place External C/C++ Code in Generated Code” (Embedded Coder)

Introduced in R2006a

3-36

Task Sync

Task Sync

Run code of downstream function-call subsystem or Stateflow chart by spawning an
example RTOS (VxWorks) task

Library: Simulink Coder / Asynchronous / Interrupt

Task
Taskl

L4
-

Templates

Description

The Task Sync block spawns an example RTOS (VxWorks) task that calls a function-call
subsystem or Stateflow chart. Typically, you place the Task Sync block between an Async
Interrupt block and a function-call subsystem block or Stateflow chart. Alternatively, you
could connect the Task Sync block to the output port of a Stateflow diagram that has an
event, Output to Simulink, configured as a function call.

The Task Sync block:

Uses the RTOS (VxWorks) system call taskSpawn to spawn an independent task.
When the task is activated, it calls the downstream function-call subsystem code or
Stateflow chart. The block calls taskDelete to delete the task during model
termination.

Creates a semaphore to synchronize the connected subsystem with execution of the
block.

Wraps the spawned task in an infinite for loop. In the loop, the spawned task listens
for the semaphore by using semTake. The first call to semTake specifies NO WAIT.
This setting lets the task determine whether a second semGive has occurred before
the completion of the function-call subsystem or chart. This sequence indicates that
the interrupt rate is too fast or the task priority is too low.

Generates synchronization code (for example, semGive ()). This code lets the
spawned task run. The task in turn calls the connected function-call subsystem code.
The synchronization code can run at interrupt level. The connection between the
Async Interrupt and Task Sync blocks accomplishes this operation and triggers
execution of the Task Sync block within an ISR.

Supplies absolute time if blocks in the downstream algorithmic code require it. The
time comes from the timer maintained by the Async Interrupt block or comes from an
independent timer maintained by the task associated with the Task Sync block.

3-37

3 Blocks — Alphabetical List

When you design your application, consider when timer and signal input values could be
taken for the downstream function-call subsystem that is connected to the Task Sync
block. By default, the time and input data are read when the RTOS (VxWorks) activates
the task. For this case, the data (input and time) are synchronized to the task itself. If
you select the Synchronize the data transfer of this task with the caller task
option and the Task Sync block driver is an Async Interrupt block, the time and input
data are read when the interrupt occurs (that is, within the ISR). For this case, data is
synchronized with the caller of the Task Sync block.

Note You can use the blocks in the vx1ib1 library (Async Interrupt and Task Sync) for
simulation and code generation. These blocks provide starting point examples to help you
develop custom blocks for your target environment.

Ports

Input

Input — Call from interrupt block
call

A call from an Async Interrupt block.

Output Arguments

Output — Call to function-call subsystem
call

A call to a function-call subsystem.

Parameters

Task name (10 characters or less) — Task function name
TaskO0 (default) | character vector

The first argument passed to the taskSpawn system call in the RTOS. The RTOS
(VxWorks) uses this name as the task function name. This name also serves as a

3-38

Task Sync

debugging aid. Routines use the task name to identify the task from which they are
called.

Simulink task priority (0-255) — RTOS task priority
50 (default) | integer

The RTOS task priority assigned to the function-call subsystem task when spawned.
RTOS (VxWorks) priorities range from 0 to 255, with 0 representing the highest priority.

Note The Simulink software does not simulate asynchronous task behavior. The task
priority of an asynchronous task is for code generation purposes only and is not honored
during simulation.

Stack size (bytes) — Maximum size for stack of the task
1024 (default) | integer

Maximum size to which the stack of the task can grow. The stack size is allocated when
the RTOS (VxWorks) spawns the task. Choose a stack size based on the number of local
variables in the task. Determine the size by examining the generated code for the task
(and functions that are called from the generated code).

Synchronize the data transfer of this task with the caller task —
Select synchronization
off (default) | on

If not selected (the default),

* The block maintains a timer that provides absolute time values required by the
computations of downstream blocks. The timer is independent of the timer
maintained by the Async Interrupt block that calls the Task Sync block.

+ A Timer resolution option appears.

* The Timer size option specifies the word size of the time counter.

If selected,

* The block does not maintain an independent timer and does not display the Timer
resolution field.

* Downstream blocks that require timers use the timer maintained by the Async
Interrupt block that calls the Task Sync block (see “Timers in Asynchronous Tasks”).

3-39

3 Blocks — Alphabetical List

3-40

The timer value is read at the time the asynchronous interrupt is serviced. Data
transfers to blocks called by the Task Sync block execute within the task associated
with the Async Interrupt block. Therefore, data transfers are synchronized with the
caller.

Timer resolution (seconds) — Resolution for timer of the block
1/60 (default)

The resolution of the timer of the block in seconds. This option appears only if
Synchronize the data transfer of this task with the caller task is not selected. By
default, the block gets the timer value by calling the tickGet function in the RTOS
(VxWorks). The default resolution is 1/60 second.

Timer size — Number of bits to store clock tick
32bits (default) | 16bits | 8bits | auto

The number of bits to store the clock tick for a hardware timer. The size can be 32bits
(the default), 16bits, 8bits, or auto. If you select auto, the code generator determines
the timer size based on the settings of Application lifespan (days) and Timer
resolution.

By default, timer values are stored as 32-bit integers. When Timer size is auto, you can
indirectly control the word size of the counters by setting the Application lifespan
(days) option. If you set Application lifespan (days) to a value that is too large for the
code generator to handle as a 32-bit integer of the specified resolution, it uses a second
32-bit integer to address overflows.

For more information, see “Control Memory Allocation for Time Counters”. See also
“Timers in Asynchronous Tasks”.

Model Examples

See Also
Async Interrupt

Topics

“Asynchronous Events”

Task Sync

Introduced in R2006a

3-41

3 Blocks — Alphabetical List

Unprotected RT

Handle transfer of data between blocks operating at different rates and maintain
determinism

|

=P
m

Library

VxWorks (vx1ibl)

Description

The Unprotected RT block is a Rate Transition block that is preconfigured to conduct
deterministic data transfers. For more information, see Rate Transition in the Simulink
Reference.

Introduced in R2006a

3-42

Code Generation Parameters: Code
Generation

4 Code Generation Parameters: Code Generation

Model Configuration Parameters: Code Generation

4-2

The Code Generation category includes parameters for defining the code generation
process including target selection. These parameters require a Simulink Coder license.
Additional parameters available with an ERT-based target require an Embedded Coder

license.

These configuration parameters appear in the Configuration Parameters > Code

Generation general category.

Parameter

Description

“System target file” on page 4-6

Specify which target file configuration will
be used.

“Browse” on page 4-8

Browse file configuration options.

“Language” on page 4-9

Specify C or C++ code generation.

“Description” on page 4-11

A description of the target file.

“Generate code only” on page 4-39

Specify code generation versus an
executable build.

“Package code and artifacts” on page 4-41

Specify whether to automatically package
generated code and artifacts for relocation.

“Zip file name” on page 4-43

Specify the name of the . zip file in which
to package generated code and artifacts for
relocation.

“Compiler optimization level” on page 4-
19

Control compiler optimizations for building
generated code.

“Custom compiler optimization flags” on
page 4-21

Specify custom compiler optimization flags.

“Toolchain” on page 4-12

Specify the toolchain to use when building
an executable or library.

“Build configuration” on page 4-14

Specify compiler optimization or debug
settings for toolchain.

“Tool/Options” on page 4-17

Display or customize build configuration
settings.

“Generate makefile” on page 4-23

Enable generation of a makefile based on a
template makefile.

Model Configuration Parameters: Code Generation

Parameter

Description

“Make command” on page 4-25

Specify a make command and optionally
append makefile options.

“Template makefile” on page 4-27

Specify the template makefile from which
to generate the makefile.

“Select objective / Prioritized objectives” on
page 4-29

Select code generation objectives to use
with the Code Generation Advisor.

“Set Objectives” on page 4-32

Open Configuration Set Objectives dialog
box.

“Set Objectives — Code Generation Advisor
Dialog Box” on page 4-33

Select and prioritize code generation
objectives.

“Check model before generating code” on
page 4-37

Choose whether to run Code Generation
Advisor checks before generating code.

“Check Model” on page 4-36

Check whether the model meets code
generation objectives.

These configuration parameters are under the Advanced parameters.

Parameter

Description

“Custom FFT library callback” on page 10-
67

Specify a callback class for FFTW library
calls in code generated for FFT functions in
MATLAB code.

“Custom LAPACK library callback” on page
10-69

Specify LAPACK library callback class for
LAPACK calls in code generated from
MATLAB code.

“Verbose build” on page 10-55

Display code generation progress.

“Retain .rtw file” on page 10-57

Specify model . rtw file retention.

“Profile TLC” on page 10-59

Profile the execution time of TLC files.

“Enable TLC assertion” on page 10-65

Produce the TLC stack trace.

“Start TLC coverage when generating code”
on page 10-63

Generate the TLC execution report.

“Start TLC debugger when generating
code” on page 10-61

Specify use of the TLC debugger

4-3

4 Code Generation Parameters: Code Generation

The following parameters under Advanced parameters are infrequently used and have
no other documentation.

Parameter Description

PostCodeGenCommand Add the specified post code generation
character vector-'' command to the model build process.
TLCOptions Specify additional TLC command-line
character vector- "' options.

The following parameters are for MathWorks use only.

Parameter Description

Comment For MathWorks use only.

PreserveName For MathWorks use only.
PreserveNameWithParent For MathWorks use only.
SignalNamingFcn For MathWorks use only.
TargetTypeEmulationWarn- For MathWorks use only.
SuppressLevel

int - 0 When greater than or equal to 2, suppress

warning messages that the code generator
displays when emulating integer sizes in
rapid prototyping environments.

The Configuration Parameters dialog box also includes other code generation:

* “Model Configuration Parameters: Code Generation Report” on page 5-2

* “Model Configuration Parameters: Code Generation Comments” on page 6-2

+ “Model Configuration Parameters: Code Generation Symbols” on page 7-2

+ “Model Configuration Parameters: Code Generation Custom Code” on page 8-2

+ “Model Configuration Parameters: Code Generation Interface” on page 9-2

See Also

More About

. “Model Configuration”

Code Generation: General Tab Overview

Code Generation: General Tab Overview

Set up general information about code generation for a model's active configuration set,
including target selection, documentation, and build process parameters.

To open the Code Generation pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Code Generation.

To get help on an option

1 Right-click the option's text label.

2 Select What's This from the popup menu.
pr—

e R

See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2

4-5

4 Code Generation Parameters: Code Generation

System target file

4-6

Description

Specify the system target file.

Category: Code Generation

Settings

Default: grt.tlc

You can specify the system target file in these ways:

Use the System Target File Browser. Click the Browse button, which lets you select
a preset target configuration consisting of a system target file, template makefile, and
make command.

Enter the name of your system target file in this field.

Tips

The System Target File Browser lists system target files found on the MATLAB path.
Some system target files require additional licensed products.

Using ERT-based system target files such as ert. tlc to generate code requires an
Embedded Coder license.

When you switch from a system target file that is not ERT-based to a file that is ERT-
based, the configuration parameter Default parameter behavior sets to Inlined
by default. However, you can change the setting of Default parameter behavior
later. For more information, see “Default parameter behavior” (Simulink).

To configure your model for rapid simulation, select rsim.tlc.

To configure your model for Simulink Real-Time™, select slrt.tlc.

Command-Line Information
Parameter: SystemTargetFile
Type: character vector

Value: valid system target file

See Also

Default: 'grt.tlc’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

ERT based (requires Embedded Coder license)

See Also
Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2

“Compare System Target File Support”

4-7

4 Code Generation Parameters: Code Generation

Browse

4-8

Description

Open the System Target File Browser, which lets you select a preset target configuration
consisting of a system target file, template makefile, and make command. The value you
select is filled into “System target file” on page 4-6.

Category: Code Generation

Tips

* The System Target File Browser lists system target files found on the MATLAB path.
Some system target files require additional licensed products, such as the Embedded
Coder product.

+ To configure your model for rapid simulation, select rsim.t1c.

* To configure your model for Simulink Real-Time, select s1rt.tlc.

See Also

Related Examples

. “Model Configuration Parameters: Code Generation” on page 4-2
. “Configure a System Target File”

. “Compare System Target File Support”

Language

Language

Description
Specify C or C++ code generation.

Category: Code Generation

Settings
Default: C

C
Generates C code and places the generated files in your build folder.
C++
Generates C++ code and places the generated files in your build folder.
On the Code Generation > Interface pane, if you additionally set the Code
interface packaging parameter to C++ class, the build generates a C++ class

interface to model code. The generated interface encapsulates required model data
into C++ class attributes and model entry point functions into C++ class methods.

If you set Code interface packaging to a value other than C++ class, the build
generates C++ compatible . cpp files containing model interfaces enclosed within an
extern "C" link directive.

You might need to configure the Simulink Coder software to use a compiler before you
build a system.

Dependencies

Selecting C++ enables and selects the value C++ class for the Code interface
packaging parameter on the Code Generation > Interface pane.

Command-Line Information
Parameter: TargetLang
Type: character vector

4-9

4 Code Generation Parameters: Code Generation

4-10

Value: 'C' | 'C++'
Default: 'C’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Select C or C++ Programming Language”

“Select and Configure C or C++ Compiler or IDE”

“Control Generation of Function Prototypes” (Embedded Coder)
“Control Generation of C++ Class Interfaces” (Embedded Coder)

Description

Description

Description
This field displays the description of the system target file. You can use this description

to differentiate between two system target files that have the same file name. To change
the value of this description, click the Browse button.

Category: Code Generation

See Also
Related Examples

. “Model Configuration Parameters: Code Generation” on page 4-2

. “Browse” on page 4-8

4-11

4 Code Generation Parameters: Code Generation

Toolchain

4-12

Description

Specify the toolchain to use when building an executable or library.

Note This parameter only appears when the model is configured to use a toolchain-based
code generation target, as described in “Choose Build Approach and Configure Build
Process”.

Category: Code Generation

Settings
Default: Automatically locate an installed toolchain

The list of available toolchains depends on the host computer platform, and can include
custom toolchains that you added.

When Toolchain is set to Automatically locate an installed toolchain, the
code generator:

1 Searches your host computer for installed toolchains.
2 Selects the most current toolchain.
3 Displays the name of the selected toolchain immediately below the drop down menu.

Tip

Click the Configuration Parameters > Code Generation > Advanced parameters
> Toolchain > Validate Toolchain button to verify that the registration information
for the toolchain is valid. When the validation process is complete, a separate
Validation report window opens and displays the results. The Validation report states
whether the toolchain registration Passed or Failed and provides status for each step and
build tool in the validation process. If the tool chain definition omits a build tool,
validation skips the unspecified tool. To fix a failure (for example, the build tool
definition omits a required build tool such as compiler or linker), edit the toolchain
definition and repeat the registration process.

See Also

Command-Line Information
Parameter: Toolchain
Type: character vector

Value: 'Automatically locate an installed toolchain' | A valid toolchain
name

Default: 'Automatically locate an installed toolchain'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Toolchain Configuration”
“Adding a Custom Toolchain” (MATLAB Coder)

4-13

4 Code Generation Parameters: Code Generation

Build configuration

Description

Specify compiler optimization or debug settings for toolchain.

Note This parameter only appears when the model is configured to use a toolchain-based
code generation target, as described in “Choose Build Approach and Configure Build
Process”.

Category: Code Generation

Settings
Default: Faster Builds

Faster Builds

Optimize for shorter build times.
Faster Runs

Optimize for faster-running executable.
Debug

Optimize for debugging.
Specify

Selecting Specify displays a table of tools with editable options. Use this table to
customize settings for the current model. See “Tool/Options” on page 4-17.

This interaction helps synchronize the Toolchain value and manually specified
Build configuration values.

Modifying the Build configuration value can affect the Toolchain value. The
Automatically locate an installed toolchain is the only value for Toolchain
that is affected by changing the Build configuration to Specify.

* Changing the Build configuration from any value to Specify, changes the
Toolchain value Automatically locate an installed toolchain (default) to

4-14

Build configuration

the value of the toolchain that was located (for example, Microsoft Visual C+
+ 2012 v11.0 | (64-bit Windows)).

* Changing the Build configuration from Specify to any other value has no effect on
the Toolchain value.

Tip

Click Show settings to display a table of tools with options for the current build
configuration. See “T'ool/Options” on page 4-17.

Customize the toolchain options for the Speci fy build configuration. These options only
apply to the current project.

To extract macro definitions (including compiler optimization flags) from the generated
makefile for toolchain approach builds on Windows or UNIX systems, see the model.bat
description in “Manage Build Process Files”.

Dependencies

Selecting Specify displays a table of tools with editable options. Use this table to
customize settings for the current model. See “Tool/Options” on page 4-17.

Command-Line Information

Parameter: BuildConfiguration

Type: character vector

Value: 'Faster Builds' | 'Faster Runs' | 'Debug' | 'Specify'
Default: 'Faster Builds'

Recommended Settings

Application Setting
Debugging Debug
Traceability No impact
Efficiency Faster Runs
Safety precaution No impact

4-15

4 Code Generation Parameters: Code Generation

See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Toolchain Configuration”
“Adding a Custom Toolchain” (MATLAB Coder)

4-16

Tool/Options

Tool/Options

Description

Display or customize build configuration settings.

Note These parameters only appear when the model is configured to use the toolchain
approach, as described in “Choose Build Approach and Configure Build Process”

Category: Code Generation

Settings

The tools column can include: Assembler, C Compiler, Linker, Shared Library Linker, C+
+ Compiler, C++ Linker, C++ Shared Library Linker, Archiver, Download, Execute,
Make Tool. The options can vary by tool and toolchain and can contain macros. Consult
third-party toolchain documentation for more information about options you can use with
a specific tool.

Dependencies

To display a table of tools and options for the current build configuration, click Show
settings, next to Build configuration.

To create a custom build configuration by editing a table of Tool/Options, set Build
configuration to Specify.

Command-Line Information

Parameter: CustomToolchainOptions

Type: character vector

Value: Specify the baseline toolchain settings. Use a new-line-delineated character

vector to specify each option and its values.
Default: '’

4-17

4 Code Generation Parameters: Code Generation

See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Toolchain Configuration”
“Adding a Custom Toolchain” (MATLAB Coder)

4-18

Compiler optimization level

Compiler optimization level

Description

Control compiler optimizations for building generated code, using flexible, generalized
controls.

Note This parameter only appears when the model is configured to use a template
makefile-based code generation target, as described in “Choose Build Approach and
Configure Build Process”.

Category: Code Generation

Settings

Default: Optimizations off (faster builds)

Optimizations off (faster builds)

Customizes compilation during the build process to minimize compilation time.
Optimizations on (faster runs)

Customizes compilation during the makefile build process to minimize run time.
Custom

Allows you to specify custom compiler optimization flags to be applied during the
makefile build process.

Tips

+ Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds) allow you to easily toggle compiler
optimizations on and off during code development.

* Custom allows you to enter custom compiler optimization flags at Simulink GUI level,
rather than editing compiler flags into template makefiles (TMFs) or supplying
compiler flags to make commands.

4-19

4 Code Generation Parameters: Code Generation

If you specify compiler options for your makefile build using OPT OPTS, MEX OPTS
(except MEX OPTS="-v"), or MEX OPT FILE, the value of Compiler optimization
level is ignored and a warning is issued about the ignored parameter.

Dependencies

This parameter enables Custom compiler optimization flags.

Command-Line Information
Parameter: RTWCompilerOptimization
Type: character vector

Value: 'off' | 'on' | 'custom'
Default: 'off"

Recommended Settings

Application Setting

Debugging Optimizations off (faster builds)

Traceability Optimizations off (faster builds)

Efficiency Optimizations on (faster runs)
(execution), No impact (ROM, RAM)

Safety precaution No impact

See Also

Related Examples

. “Model Configuration Parameters: Code Generation” on page 4-2
. “Custom compiler optimization flags” on page 4-21
. “Control Compiler Optimizations”

4-20

Custom compiler optimization flags

Custom compiler optimization flags

Description

Specify compiler optimization flags to be applied to building the generated code for your
model.

Note This parameter only appears when the model is configured to use a template
makefile-based code generation target, as described in “Choose Build Approach and
Configure Build Process”.

Category: Code Generation

Settings
Default: '’

Specify compiler optimization flags without quotes, for example, -02.

Dependency

This parameter is enabled by selecting the value Custom for the parameter Compiler
optimization level.

Command-Line Information

Parameter: RTWCustomCompilerOptimizations
Type: character vector

Value: '' | user-specified flags

Default: '

Recommended Settings

See “Compiler optimization level” on page 4-19.

4-21

4 Code Generation Parameters: Code Generation

See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2

“Compiler optimization level” on page 4-19

. “Control Compiler Optimizations”

4-22

Generate makefile

Generate makefile

Description

Enable generation of a makefile based on a template makefile.

Note This option only appears when the model is configured to use a template makefile-
based code generation target, as described in “Choose Build Approach and Configure
Build Process”.

Category: Code Generation

Settings
Default: on
¥ On
Generates a makefile for a model during the build process.

I off

Suppresses the generation of a makefile. You must set up post code generation build
processing, including compilation and linking, as a user-defined command.

Dependencies

This parameter enables:

+ Make command

+ Template makefile

Command-Line Information
Parameter: GenerateMakefile
Type: character vector

Value: 'on' | 'off"

Default: 'on'

4-23

4 Code Generation Parameters: Code Generation

4-24

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
. “Customize Post-Code-Generation Build Processing”
. “Customize Build Process with STF _make_rtw_hook File”

. “Target Development and the Build Process”

Make command

Make command

Description

Specify a make command and optionally append makefile options.

Note This parameter only appears when the model is configured to use a template
makefile-based code generation target, as described in “Choose Build Approach and
Configure Build Process”.

Category: Code Generation

Settings
Default: make rtw

An internal MATLAB command used by code generation software to control the build
process. The specified make command is invoked when you start a build.

* Each target has an associated make command, automatically supplied when you
select a target file using the System Target File Browser.
* Some third-party targets supply a make command. See the vendor's documentation.

* You can supply makefile options in the Make command field. The options are passed
to the command-line invocation of the make utility, which adds them to the overall
flags passed to the compiler. Append the options after the make command, as in the
following example:

make rtw OPTS="-DMYDEFINE=1"

The syntax for makefile options differs slightly for different compilers.
Tip
* Most targets use the default command.

* You should not invoke make rtw or other internal make commands directly from
MATLAB code. To initiate a model build from MATLAB code, use documented build
commands such as slbuild or rtwbuild.

4-25

4 Code Generation Parameters: Code Generation

4-26

Dependency

This parameter is enabled by Generate makefile.

Command-Line Information
Parameter: MakeCommand
Type: character vector

Value: valid make command MATLAB language file
Default: 'make rtw'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
“Model Configuration Parameters: Code Generation” on page 4-2
“Template Makefiles and Make Options”
“Customize Build Process with STF _make_rtw_hook File”

“Target Development and the Build Process”

Template makefile

Template makefile

Description

Specify the template makefile from which to generate the makefile.

Note This parameter only appears when the model is configured to use a template
makefile-based code generation target, as described in “Choose Build Approach and
Configure Build Process”.

Category: Code Generation

Settings
Default: grt default tmf

The template makefile determines which compiler runs, during the make phase of the
build, to compile the generated code. You can specify template makefiles in the following
ways:

* Generate a value by selecting a target configuration using the System Target File
Browser.

+ Explicitly enter a custom template makefile filename (including the extension). The
file must be on the MATLAB path.

Tips

+ If you do not include a filename extension for a custom template makefile, the code
generator attempts to find and execute a MATLAB language file.

* You can customize your build process by modifying an existing template makefile or
by providing your own template makefile.

Dependency

This parameter is enabled by Generate makefile.

4-27

4 Code Generation Parameters: Code Generation

Command-Line Information
Parameter: TemplateMakefile

Type: character vector

Value: valid template makefile filename
Default: 'grt default tmf'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Template Makefiles and Make Options”
“Compare System Target File Support”

4-28

Select objective / Prioritized objectives

Select objective / Prioritized objectives

Description

Select code generation objectives for reviewing your model configuration settings with
the Code Generation Advisor.

Category: Code Generation

Settings
Default: Unspecified

Unspecified
No objective specified. Do not optimize code generation settings using the Code
Generation Advisor. This option only appears for GRT-based targets.

Debugging
Specifies debugging objective. Optimize code generation settings for debugging the

code generation build process using the Code Generation Advisor. This option only
appears for GRT-based targets.

Execution efficiency

Specifies execution efficiency objective. Optimize code generation settings to achieve
fast execution time using the Code Generation Advisor. This option only appears for
GRT-based targets.

Tip

The parameter name displayed for GRT-based targets is Select objective and for ERT-
based targets, it is Prioritized objectives. To configure the code generation objectives
with an ERT-based target, the Prioritized objectives parameter has an associated Set

Objectives button. Click the Set Objectives button to open the Set Objectives - Code
Generation Advisor dialog box.

Dependency

The Prioritized objectives parameter and the Set Objectives button require
Embedded Coder.

4-29

4 Code Generation Parameters: Code Generation

4-30

Command-Line Information
Parameter: 'ObjectivePriorities’
Type: cell array of character vectors

Value: {''} | {'Debugging'} | {'Execution efficiency'}
Default: {' '}

Recommended Settings

Application Setting

Debugging Debugging

Traceability Not applicable for GRT-based targets
Efficiency Execution efficiency

Safety precaution No recommendation

See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2

“Configure Model for Code Generation Objectives by Using Code Generation
Advisor” (Embedded Coder)

“Application Objectives Using Code Generation Advisor”

Prioritized objectives

Prioritized objectives

Description
List objectives that you specify by clicking the Set Objectives button.

Category: Code Generation

Dependencies

This parameter appears only for ERT-based targets.

This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Command: get param('model', 'ObjectivePriorities')

See Also

Related Examples
“Model Configuration Parameters: Code Generation” on page 4-2

“Configure Model for Code Generation Objectives by Using Code Generation
Advisor” (Embedded Coder)

“Application Objectives Using Code Generation Advisor”

4-31

4 Code Generation Parameters: Code Generation

Set Objectives

4-32

Description
Open Configuration Set Objectives dialog box.

Category: Code Generation

Dependency

This button appears only for ERT-based targets.

See Also

Related Examples
“Model Configuration Parameters: Code Generation” on page 4-2

“Configure Model for Code Generation Objectives by Using Code Generation
Advisor” (Embedded Coder)

“Application Objectives Using Code Generation Advisor”

Set Objectives — Code Generation Advisor Dialog Box

Set Objectives — Code Generation Advisor Dialog Box

Description

Select and prioritize code generation objectives to use with the Code Generation Advisor.

I =

"l Set Objectives - Code Generation Advisar @

Description

Select and prioritize your code generation objectives. You can add custom
objectives, for details, see the documentation,

Available objectives Selected objectives - prioritized

Execution efficiency
ROM efficiency
Ram efficiency
Traceability
Safety precaution

Debugging +l
MISRA C:2012 guidelines
Polyspace

« (=

(]4 H Cancel H Help

Category: Code Generation

Settings

From the Available objectives list, select objectives.

2 Click the select button (arrow pointing right) to move the objectives that you selected
into the Selected objectives - prioritized list.

3 Click the higher priority (up arrow) and lower priority (down arrow) buttons to
prioritize the objectives.

4-33

4 Code Generation Parameters: Code Generation

4-34

Objectives

List of available objectives.

Execution efficiency — Configure code generation settings to achieve fast execution
time.

ROM efficiency — Configure code generation settings to reduce ROM usage.

RAM efficiency — Configure code generation settings to reduce RAM usage.
Traceability — Configure code generation settings to provide mapping between model
elements and code.

Safety precaution — Configure code generation settings to increase clarity,
determinism, robustness, and verifiability of the code.

Debugging — Configure code generation settings to debug the code generation build
process.

MISRA C:2012 guidelines — Configure code generation settings to increase
compliance with MISRA C:2012 guidelines.

Polyspace — Configure code generation settings to prepare the code for Polyspace®
analysis.

Note If you select the MISRA C:2012 guidelines code generation objective, the Code
Generation Advisor checks:

* The model configuration settings for compliance with the MISRA C:2012
configuration setting recommendations.

+ For blocks that are not supported or recommended for MISRA C:2012 compliant code
generation.

Priorities
After you select objectives from the Available objectives parameter, organize the

objectives in the Selected objectives - prioritized parameter with the highest priority
objective at the top.

Dependency

This dialog box appears only for ERT-based targets.

See Also

Command-Line Information

Parameter: 'ObjectivePriorities’

Type: cell array of character vectors; combination of the available values

Value: {''} | {'Execution efficiency'} | {'ROM efficiency'} | {'RAM
efficiency'} | {'Traceability'} | {'Safety precaution'} | {'Debugging’}
| {"MISRA C:2012 guidelines'} | {'Polyspace'}

Default: {''}

See Also

Related Examples

. “Model Configuration Parameters: Code Generation” on page 4-2

. “Configure Model for Code Generation Objectives by Using Code Generation
Advisor” (Embedded Coder)

. “Application Objectives Using Code Generation Advisor”

4-35

4 Code Generation Parameters: Code Generation

Check Model

4-36

Description
Run the Code Generation Advisor checks.

Category: Code Generation

Settings

1 Specify code generation objectives using the Select objective parameter (available
with GRT-based targets) or in the Configuration Set Objectives dialog box, by
clicking Set Objectives (available with ERT-based targets).

2 Click Check Model. The Code Generation Advisor runs the code generation
objectives checks and provide suggestions for changing your model to meet the
objectives.

Dependency

You must specify objectives before checking the model.

See Also

Related Examples
. “Model Configuration Parameters: Code Generation” on page 4-2

. “Configure Model for Code Generation Objectives by Using Code Generation
Advisor” (Embedded Coder)

. “Application Objectives Using Code Generation Advisor”

Check model before generating code

Check model before generating code

Description
Choose whether to run Code Generation Advisor checks before generating code.

Category: Code Generation

Settings
Default: Off

Off

Generates code without checking whether the model meets code generation
objectives. The code generation report summary and file headers indicate the
specified objectives and that the validation was not run.

On (proceed with warnings)

Checks whether the model meets code generation objectives using the Code
Generation Objectives checks in the Code Generation Advisor. If the Code Generation
Advisor reports a warning, the code generator continues producing code. The code
generation report summary and file headers indicate the specified objectives and the
validation result.

On (stop for warnings)
Checks whether the model meets code generation objectives using the Code

Generation Objectives checks in the Code Generation Advisor. If the Code Generation
Advisor reports a warning, the code generator does not continue producing code.

Command-Line Information
Parameter: CheckMdlBeforeBuild
Type: character vector

Value: '0ff' | 'Warning' | 'Error'
Default: '0ff"

4-37

4 Code Generation Parameters: Code Generation

4-38

Recommended Settings
Application
Debugging

Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting

On (proceed with
for warnings)

On (proceed with
for warnings)

On (proceed with
for warnings)

On (proceed with
for warnings)

warnings) or On

warnings) or On

warnings) or On

warnings) or On

. “Model Configuration Parameters: Code Generation” on page 4-2

(stop

(stop

(stop

(stop

. “Configure Model for Code Generation Objectives by Using Code Generation

Advisor” (Embedded Coder)

. “Application Objectives Using Code Generation Advisor”

Generate code only

Generate code only

Description

Specify code generation versus an executable build.

Category: Code Generation

Settings
Default: off

|7On

The build process generates code and a makefile, but it does not invoke the make
command.

™ off

The build process generates and compiles code, and creates an executable file.
Tip
Generate code only generates a makefile only if you select Generate makefile.

Command-Line Information
Parameter: GenCodeOnly
Type: character vector

Value: 'on' | 'off’

Default: 'off"

Recommended Settings

Application Setting
Debugging Off
Traceability No impact
Efficiency No impact

4-39

4 Code Generation Parameters: Code Generation

Application Setting
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2

“Customize Post-Code-Generation Build Processing”

4-40

Package code and artifacts

Package code and artifacts

Description

Specify whether to automatically package generated code and artifacts for relocation.

Category: Code Generation

Settings
Default: off

|7On

The build process runs the packNGo function after code generation to package
generated code and artifacts for relocation.

I off

The build process does not run packNGo after code generation.

Dependency

Selecting this parameter enables Zip file name and clearing this parameter disables
Zip file name.

Command-Line Information

Parameter: PackageGeneratedCodeAndArtifacts
Type: character vector

Value: 'on' | 'off"

Default: 'of £’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

4-41

4 Code Generation Parameters: Code Generation

4-42

Application Setting
Safety precaution No impact
See Also

Related Examples

. “Model Configuration Parameters: Code Generation” on page 4-2
. “Relocate Code to Another Development Environment”
. “packNGo Function Limitations”

Zip file name

Zip file name

Description

Specify the name of the . zip file in which to package generated code and artifacts for
relocation.

Category: Code Generation

Settings
Default: '

You can enter the name of the zip file in which to package generated code and artifacts
for relocation. The file name can be specified with or without the . zip extension. If you
do not specify an extension or an extension other than .zip, the zip utility adds

the . zip extension. If a value is not specified, the build process uses the name

model . zip, where model is the name of the top model for which code is being generated.

Dependency

This parameter is enabled by Package code and artifacts.

Command-Line Information
Parameter: PackageName
Type: character vector

Value: valid name for a . zip file
Default: "off"'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

4-43

4 Code Generation Parameters: Code Generation

See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2

“Relocate Code to Another Development Environment”

. “packNGo Function Limitations”

4-44

Code Generation Parameters: Report

5 Code Generation Parameters: Report

Model Configuration Parameters: Code Generation Report

5-2

The Code Generation > Report category includes parameters for generating and
customizing the code generation report. These parameters require a Simulink Coder
license. Additional parameters available with an ERT-based target require an Embedded

Coder license.

On the Configuration Parameters dialog box, the following configuration parameters are

on the Code Generation > Report pane.

Parameter

Description

“Create code generation report” on page 5-
5

Document generated code in an HTML
report.

“Open report automatically” on page 5-8

Specify whether to display code generation
reports automatically.

“Generate model Web view” on page 5-10

Include the model Web view in the code
generation report to navigate between the
code and model within the same window.

“Static code metrics” on page 5-12

Include static code metrics report in the
code generation report.

These configuration parameters are under the Advanced parameters.

Parameter

Description

“Code-to-model” on page 10-6

Include hyperlinks in the code generation
report that link code to the corresponding
Simulink blocks, Stateflow objects, and

MATLAB functions in the model diagram.

“Model-to-code” on page 10-8

Link Simulink blocks, Stateflow objects,
and MATLAB functions in a model
diagram to corresponding code segments in
a generated HTML report so that the
generated code for a block can be
highlighted on request.

“Configure” on page 10-10

Open the Model-to-code navigation

dialog box for specifying a build folder

containing previously-generated model
code to highlight.

See Also

Parameter

Description

“Eliminated / virtual blocks” on page 10-
11

Include summary of eliminated and virtual
blocks in code generation report.

“Traceable Simulink blocks” on page 10-13

Include summary of Simulink blocks in
code generation report.

“Traceable Stateflow objects” on page 10-
15

Include summary of Stateflow objects in
code generation report.

“Traceable MATLAB functions” on page 10-
17

Include summary of MATLAB functions in
code generation report.

“Summarize which blocks triggered code
replacements” on page 10-19

Include code replacement report
summarizing replacement functions used
and their associated blocks in the code
generation report.

See Also

More About

. “Report Generation”

. “Model Configuration”

5-3

5 Code Generation Parameters: Report

Code Generation: Report Tab Overview

5-4

Control the code generation report that the code generator automatically creates.

Configuration

To create a code generation report during the build process, select the Create code
generation report parameter.

See Also

Related Examples

. “Model Configuration Parameters: Code Generation Report” on page 5-2
. “Generate a Code Generation Report”
. “Reports for Code Generation”

. “HTML Code Generation Report Extensions” (Embedded Coder)

Create code generation report

Create code generation report

Description

Document generated code in an HTML report.

Category: Code Generation > Report

Settings

Default: On

|7On

Generates a summary of code generation source files in an HTML report. Places the
report files in an html subfolder within the build folder. In the report,

The Summary section lists version and date information. The Configuration
Settings at the Time of Code Generation link opens a noneditable view of the
Configuration Parameters dialog that shows the Simulink model settings,
including TLC options, at the time of code generation.

The Subsystem Report section contains information on nonvirtual subsystems
in the model.

The Code Interface Report section provides information about the generated
code interface, including model entry point functions and input/output data
(requires an Embedded Coder license and the ERT target).

The Traceability Report section allows you to account for Eliminated /
Virtual Blocks that are untraceable, versus the listed Traceable Simulink
Blocks / Stateflow Objects / MATLAB Scripts, providing a complete mapping
between model elements and code (requires an Embedded Coder license and the
ERT system target file).

The Static Code Metrics Report section provides statistics of the generated
code. Metrics are estimated from static analysis of the generated code.

The Code Replacements Report section allows you to account for code
replacement library (CRL) functions that were used during code generation,
providing a mapping between each replacement instance and the Simulink block
that triggered the replacement.

5-5

5 Code Generation Parameters: Report

5-6

In the Generated Files section, you can click the names of source code files
generated from your model to view their contents in a MATLAB Web browser
window. In the displayed source code,

* Global variable instances are hyperlinked to their definitions.

+ If you selected the traceability option Code-to-model, hyperlinks within the
displayed source code let you view the blocks or subsystems from which the code
was generated. Click on the hyperlinks to view the relevant blocks or subsystems
in a Simulink model window (requires an Embedded Coder license and the ERT
system target file).

+ If you selected the traceability option Model-to-code, you can view the generated
code for a block in the model. To highlight a block's generated code in the HTML
report, right-click the block and select C/C++ Code > Navigate to C/C++ Code
(requires an Embedded Coder license and the ERT system target file).

+ If you set the Code coverage tool parameter on the Code Generation >
Verification pane, you can view the code coverage data and annotations in the
generated code in the HTML Code Generation Report (requires an Embedded
Coder license and the ERT system target file).

I off

Does not generate a summary of files.

Dependency

This parameter enables and selects

* “Open report automatically” on page 5-8
* “Code-to-model” on page 10-6 (ERT target)

This parameter enables

* “Model-to-code” on page 10-8 (ERT target)

+ “Eliminated / virtual blocks” on page 10-11 (ERT target)

* “Traceable Simulink blocks” on page 10-13 (ERT target)

+ “Traceable Stateflow objects” on page 10-15 (ERT target)

* “Traceable MATLAB functions” on page 10-17 (ERT target)

See Also

Command-Line Information
Parameter: GenerateReport
Type: character vector

Value: 'on' | 'off"

Default: 'on’

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting

On

On

No impact

No recommendation

“Model Configuration Parameters: Code Generation Report” on page 5-2

“Reports for Code Generation”

“HTML Code Generation Report Extensions” (Embedded Coder)
“Configure Code Coverage with Third-Party Tools” (Embedded Coder)

5-7

5 Code Generation Parameters: Report

Open report automatically

5-8

Description

Specify whether to display code generation reports automatically.

Category: Code Generation > Report

Settings
Default: On
¥ On
Displays the code generation report automatically in a new browser window.

I off

Does not display the code generation report, but the report is still available in the
html folder.

Dependency

This parameter is enabled and selected by Create code generation report.

Command-Line Information
Parameter: LaunchReport
Type: character vector

Value: 'on' | 'off"

Default: 'on’

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

See Also

See Also

Related Examples

“Model Configuration Parameters: Code Generation Report” on page 5-2
“Reports for Code Generation”
“HTML Code Generation Report Extensions” (Embedded Coder)

5-9

5 Code Generation Parameters: Report

Generate model Web view

5-10

Description

Include the model Web view in the code generation report to navigate between the code
and model within the same window. You can share your model and generated code
outside of the MATLAB environment. You must have a Simulink Report Generator™
license to include a Web view (Simulink Report Generator) of the model in the code
generation report.

Category: Code Generation > Report

Settings

Default: Off

Y On

Include model Web view in the code generation report.

Off

Omit model Web view in the code generation report.

Dependencies

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.
* This parameter is enabled and selected by Create code generation report.

* To enable traceability between the code and model, select Code-to-model and
Model-to-code.

Command-Line Information
Parameter: GenerateWebview
Type: string

Value: 'on' | 'off"

See Also

Default: 'off’

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

“Model Configuration Parameters: Code Generation Report” on page 5-2

Related Examples

“Web View of Model in Code Generation Report” (Embedded Coder)

Setting

No impact
No impact
No impact

No impact

5-11

5 Code Generation Parameters: Report

Static code metrics

Description
Include static code metrics report in the code generation report.

Category: Code Generation > Report

Settings
Default: Off

¥ On
Include static code metrics report in the code generation report.

I off

Omit static code metrics report from the code generation report.

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

* This parameter is enabled when you select Create code generation report.

Command-Line Information
Parameter: GenerateCodeMetricsReport
Type: Boolean

Value: on | off

Default: of £

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

5-12

See Also

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
“Model Configuration Parameters: Code Generation Report” on page 5-2
“Static Code Metrics” (Embedded Coder)

5-13

Code Generation Parameters: Comments

6 Code Generation Parameters: Comments

Model Configuration Parameters: Code Generation Comments

6-2

The Code Generation > Comments category includes parameters for configuring the
comments in the generated code. These parameters require a Simulink Coder license.
Additional parameters available with an ERT-based target require an Embedded Coder

license.

On the Configuration Parameters dialog box, the following configuration parameters are
on the Code Generation > Comments pane.

Parameter

Description

“Include comments” on page 6-5

Specify which comments are in generated
files.

“Simulink block comments” on page 6-7

Specify whether to insert Simulink block
comments.

“Stateflow object comments” on page 6-9

Specify whether to insert Stateflow object
comments.

“MATLAB source code as comments” on
page 6-11

Specify whether to insert MATLAB source
code as comments.

“Show eliminated blocks” on page 6-13

Specify whether to insert eliminated block's
comments.

“Verbose comments for SimulinkGlobal
storage class” on page 6-15

Reduce code size or improve code
traceability by controlling the generation of
comments.

“Operator annotations” on page 6-17

Specify whether to include operator
annotations for Polyspace in the generated
code as comments.

“Simulink block descriptions” on page 6-
19

Specify whether to insert descriptions of
blocks into generated code as comments.

“Stateflow object descriptions” on page 6-
27

Specify whether to insert descriptions of
Stateflow objects into generated code as
comments.

“Simulink data object descriptions” on page
6-21

Specify whether to insert descriptions of
Simulink data objects into generated code
as comments.

See Also

Parameter

Description

“Requirements in block comments” on page
6-29

Specify whether to include requirement
descriptions assigned to Simulink blocks in
generated code as comments.

“Custom comments (MPT objects only)” on
page 6-23

Specify whether to include custom
comments for module packaging tool (MPT)
signal and parameter data objects in
generated code.

“MATLAB user comments” on page 6-31

Specify whether to include MATLAB user
comments as comments.

“Custom comments function” on page 6-25

Specify a file that contains comments to be
included in generated code for module
packing tool (MPT) signal and parameter
data objects.

The following configuration parameters are u

nder the Advanced parameters.

Parameter

Description

“Comment style” on page 10-81

Specify a multi-line or single-line comment
style for generated C or C++ code.

See Also

More About

. “Code Appearance”

. “Model Configuration”

6-3

6 Code Generation Parameters: Comments

Code Generation: Comments Tab Overview

Control the comments that the code generator creates and inserts into the generated
code.

See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

6-4

Include comments

Include comments

Description
Specify which comments are in generated files.

Category: Code Generation > Comments

Settings
Default: On

|701r1

Places comments in the generated files based on the selections in the Auto
generated comments pane.

I off

Omits comments from the generated files.

Note This parameter does not apply to copyright notice comments in the generated
code.

Dependencies

This parameter enables:

Simulink block comments
Stateflow object comments
MATLAB source code as comments
Show eliminated blocks

Verbose comments for SimulinkGlobal storage class

Command-Line Information

Parameter: GenerateComments
Type: character vector

6-5

6 Code Generation Parameters: Comments

6-6

Value: 'on' | 'off"
Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

Simulink block comments

Simulink block comments

Description

Specify whether to insert Simulink block comments.

Category: Code Generation > Comments

Settings
Default: On

|7On

Inserts automatically generated comments that describe a block's code. The
comments precede generated code in the generated file.

™ off

Suppresses comments.

Dependency

Include comments enables this parameter.

Command-Line Information
Parameter: SimulinkBlockComments
Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact

6-7

6 Code Generation Parameters: Comments

Application Setting
Safety precaution No recommendation
See Also

Related Examples
. “Model Configuration Parameters: Code Generation Comments” on page 6-2

6-8

Stateflow object comments

Stateflow object comments

Description
Specify whether to insert Stateflow object comments.

Category: Code Generation > Comments

Settings
Default: Off

|7On

Inserts automatically generated comments that contain Stateflow object IDs or
MATLAB code line locations. The comments precede the generated code in the
generated file. For example,

/* Entry 'First': '<82>:2' */
rty.outl = 1;

'<S2>:2" is a hyperlinked traceability tag that facilitates tracing of generated code
to corresponding Stateflow element.

I off

Suppresses comments.

Dependency

Include comments enables this parameter.

Command-Line Information
Parameter: StateflowObjectComments
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

6-9

6 Code Generation Parameters: Comments

6-10

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting
On

On

No impact

No recommendation

“Model Configuration Parameters: Code Generation Comments” on page 6-2

“Trace Stateflow Elements in Generated Code” (Embedded Coder)

MATLAB source code as comments

MATLAB source code as comments

Description
Specify whether to insert MATLAB source code as comments.

Category: Code Generation > Comments

Settings
Default: Off

|7On

Inserts MATLAB source code as comments in the generated code. The comment
appears after the traceability tag and precedes the associated generated code. For
example,

/* '<82>:1:22' xbl = x-1; */
xbl = x;

Selecting this parameter adds the MATLAB code xbl = x-1; in the traceability
comment.

Includes the function signature in the function banner.

I off

Suppresses comments and does not include the function signature in the function
banner.

Dependency

Include comments enables this parameter.

Command-Line Information
Parameter: MATLABSourceComments
Type: character vector

Value: 'on' | 'off"

6-11

6 Code Generation Parameters: Comments

6-12

Default: 'off’

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting
On

On

No impact

No recommendation

“Model Configuration Parameters: Code Generation Comments” on page 6-2

“Include MATLAB Code as Comments in Generated Code” (Simulink)

Show eliminated blocks

Show eliminated blocks

Description
Specify whether to insert eliminated block's comments.

Category: Code Generation > Comments

Settings
Default: On

|7On

Inserts statements in the generated code from blocks eliminated as the result of
optimizations (such as parameter inlining).

™ off

Suppresses statements.

Dependency

Include comments enables this parameter.

Command-Line Information
Parameter: ShowEliminatedStatement
Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact

6-13

6 Code Generation Parameters: Comments

Application Setting
Safety precaution No recommendation
See Also

Related Examples
. “Model Configuration Parameters: Code Generation Comments” on page 6-2

6-14

Verbose comments for SimulinkGlobal storage class

Verbose comments for SimulinkGlobal storage class

Description

Reduce code size or improve code traceability by controlling the generation of comments.
The comments appear interleaved in the code that initializes the fields of the model
parameter structure, which appears in the model data.c file or the model. c file. Each
comment indicates the name of a parameter object (Simulink.Parameter) or MATLAB
variable and the blocks that use the object or variable to set parameter values.

Parameter objects and MATLAB variables appear in the model parameter structure
under either of these conditions:

* You apply the storage class SimulinkGlobal to the object or variable.

* You apply the storage class Auto to the object or variable and set the model
configuration parameter Default parameter behavior to Tunable.

For more information about parameter representation in the generated code, see “Block
Parameter Representation in the Generated Code”.

Category: Code Generation > Comments

Settings
Default: On

|7On

Generate comments regardless of the number of parameter values stored in the
parameter structure. Use this setting to improve traceability between the generated
code and the parameter objects or variables that the model uses.

I off

Generate comments only if the parameter structure contains fewer than 1000
parameter values. An array parameter with n elements represents n values. For
large models, use this setting to reduce the size of the generated file.

6-15

6 Code Generation Parameters: Comments

Dependency

Include comments enables this parameter.

Command-Line Information
Parameter: ForceParamTrailComments
Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

“Block Parameter Representation in the Generated Code”

6-16

Operator annotations

Operator annotations

Description

Specify whether to include operator annotations for Polyspace in the generated code as
comments.

Category: Code Generation > Comments

Settings
Default: On

¥ On
Includes operator annotations in the generated code.

I off

Does not include operator annotations in the generated code.

Tips

* These annotations help document overflow behavior that is due to the way the code
generator implements an operation. These operators cannot be traced to an overflow
in the design.

+ Justify operators that the Polyspace software cannot prove. When this option is
enabled, if the code generator uses one of these operators, it adds annotations to the
generated code to justify the operators for Polyspace.

* The code generator cannot justify operators that result from the design.
Dependency

+ This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

+ Include comments enables this parameter.

6-17

6 Code Generation Parameters: Comments

6-18

Command-Line Information
Parameter: OperatorAnnotations
Type: character vector

Value: 'on' | 'off’

Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability On

Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

“Annotate Code for Justifying Polyspace Checks” (Embedded Coder)

Simulink block descriptions

Simulink block descriptions

Description
Specify whether to insert descriptions of blocks into generated code as comments.

Category: Code Generation > Comments

Settings
Default: On

¥ On
Includes the following comments in the generated code for each block in the model,
with the exception of virtual blocks and blocks removed due to block reduction:
* The block name at the start of the code, regardless of whether you select
Simulink block comments
+ Text specified in the Description field of each Block Properties dialog box

For information on code generator treatment of strings that are unrepresented in the
character set encoding for the model, see “Internationalization and Code Generation”.

™ off

Suppresses the generation of block name and description comments in the generated
code.

Dependency

+ This parameter only appears for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: InsertBlockDesc
Type: character vector
Value: 'on' | 'off"

6-19

6 Code Generation Parameters: Comments

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency Noimpact
Safety precaution Noimpact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

“Internationalization and Code Generation”

6-20

Simulink data object descriptions

Simulink data object descriptions

Description

Specify whether to insert descriptions of Simulink data objects into generated code as
comments.

This parameter does not affect Simulink.LookupTable or Simulink.Breakpoint
objects that you configure to appear in the generated code as a structure (for example, by
storing all of the table and breakpoint data in a single Simulink.LookupTable object).

Category: Code Generation > Comments

Settings
Default: On

|7On

Inserts contents of the Description field in the Model Explorer Object Properties
pane for each Simulink data object (signal, parameter, and bus objects) in the
generated code as comments.

For information on code generator treatment of strings that are unrepresented in the
character set encoding for the model, see “Internationalization and Code Generation”.

I off

Suppresses the generation of data object property descriptions as comments in the
generated code.

Dependency

* This parameter only appears for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: SimulinkDataObjDesc
Type: character vector

6-21

6 Code Generation Parameters: Comments

Value: 'on' | 'off"
Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency Noimpact
Safety precaution Noimpact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

6-22

Custom comments (MPT objects only)

Custom comments (MPT objects only)

Description

Specify whether to include custom comments for module packaging tool (MPT) signal and
parameter data objects in generated code. MPT data objects are objects of the classes
mpt.Parameter and mpt.Signal.

Category: Code Generation > Comments

Settings
Default: Off

|7On

Inserts comments just above the identifiers for signal and parameter MPT objects in
generated code.

I off

Suppresses the generation of custom comments for signal and parameter identifiers.

Dependency

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

* This parameter requires that you include the comments in a function defined in a
MATLAB language file or TLC file that you specify with Custom comments
function.

Command-Line Information
Parameter: EnableCustomComments
Type: character vector

Value: 'on' | 'off"

Default: 'of £’

6-23

6 Code Generation Parameters: Comments

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency Noimpact
Safety precaution Noimpact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

“Add Custom Comments for Variables in the Generated Code” (Embedded Coder)

6-24

Custom comments function

Custom comments function

Description

Specify a file that contains comments to be included in generated code for module
packing tool (MPT) signal and parameter data objects. MPT data objects are objects of
the classes mpt.Parameter and mpt.Signal.

Category: Code Generation > Comments

Settings
Default: '’

Enter the name of the MATLAB language file or TLC file for the function that includes
the comments to be inserted of your MPT signal and parameter objects. You can specify
the file name directly or click Browse and search for a file.

Tip

You might use this option to insert comments that document some or all of the property
values of an object.

For an example MATLAB function, see the function matlabroot/toolbox/rtw/
rtwdemos/rtwdemo comments mptfun.m.

Dependency

+ This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

* Custom comments (MPT objects only) enables this parameter.

Command-Line Information

Parameter: CustomCommentsFcn
Type: character vector
Value: valid file name

6-25

matlab:edit(fullfile(matlabroot,'toolbox','rtw','rtwdemos','rtwdemo_comments_mptfun'))

6 Code Generation Parameters: Comments

6-26

Default: '’

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting

Valid file name
Valid file name
Noimpact

Noimpact

“Model Configuration Parameters: Code Generation Comments” on page 6-2

“Add Custom Comments for Variables in the Generated Code” (Embedded Coder)

Stateflow object descriptions

Stateflow object descriptions

Description

Specify whether to insert descriptions of Stateflow objects into generated code as
comments.

Category: Code Generation > Comments

Settings
Default: On

|7On

Inserts descriptions of Stateflow states, charts, transitions, and graphical functions
into generated code as comments. The descriptions come from the Description field
in Object Properties pane in the Model Explorer for these Stateflow objects. The
comments appear just above the code generated for each object.

For information on code generator treatment of strings that are unrepresented in the
character set encoding for the model, see “Internationalization and Code Generation”.

I off

Suppresses the generation of comments for Stateflow objects.

Dependency

* This parameter only appears for ERT-based targets.

* This parameter requires a Stateflow license.

Command-Line Information
Parameter: SFDataObjDesc
Type: character vector

Value: 'on' | 'off"

Default: 'on'

6-27

6 Code Generation Parameters: Comments

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency Noimpact
Safety precaution Noimpact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

“Internationalization and Code Generation”

6-28

Requirements in block comments

Requirements in block comments

Description

Specify whether to include requirement descriptions assigned to Simulink blocks in

generated code as comments.

Category: Code Generation > Comments

Settings
Default: Off

|7On

Inserts the requirement descriptions that you assign to Simulink blocks into the
generated code as comments. The code generator includes the requirement
descriptions in the generated code in the following locations.

Model Element

Requirement Description Location

Model

In the main header file model.h

Nonvirtual subsystems

At the call site for the subsystem

Virtual subsystems

At the call site of the closest nonvirtual parent
subsystem. If a virtual subsystem does not have a
nonvirtual parent, requirement descriptions are
located in the main header file for the model, model ..

Nonsubsystem blocks

In the generated code for the block

For information on code generator treatment of strings that are unrepresented in the
character set encoding for the model, see “Internationalization and Code Generation”.

™ off

Suppresses the generation of comments for block requirement descriptions.

Dependency

* This parameter only appears for ERT-based targets.

6-29

6 Code Generation Parameters: Comments

6-30

* This parameter requires Embedded Coder and Simulink Check™ licenses when
generating code.

Tips

If you use an external . req file to store your requirement links, to avoid stale comments

in generated code, before code generation, you must save any change in your requirement
links.

Command-Line Information
Parameter: RegsInCode

Type: character vector

Value: 'on' | 'off"

Default: 'off"

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Noimpact

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

. “How Requirements Information Is Included in Generated Code” (Simulink
Requirements)

MATLAB user comments

MATLAB user comments

Description

Specify whether to include MATLAB user comments including both function description
comments and other user comments from MATLAB code as comments in the generated
code.

Category: Code Generation > Comments

Settings
Default: Off

v On
Inserts MATLAB user comments as comments.

I off

Suppresses comments.

Dependency

This parameter only appears for ERT-based targets.
This parameter requires an Embedded Coder license when generating code.

Include comments enables this parameter.

Command-Line Information
Parameter: MATLABFcnDesc
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting
Debugging On

6-31

6 Code Generation Parameters: Comments

Application Setting
Traceability On
Efficiency Noimpact
Safety precaution No impact
See Also

Related Examples
“Model Configuration Parameters: Code Generation Comments” on page 6-2
“Including MATLAB user comments in Generated Code” (Simulink)

6-32

Code Generation Parameters: Symbols

7 Code Generation Parameters: Symbols

Model Configuration Parameters: Code Generation Symbols

7-2

The Code Generation > Symbols category includes parameters for configuring the
comments in the generated code. These parameters require a Simulink Coder license.
Additional parameters available with an ERT-based target require an Embedded Coder

license.

On the Configuration Parameters dialog box, the following configuration parameters are

on the Code Generation > Symbols.

Parameter

Description

“Global variables” on page 7-6

Customize generated global variable
identifiers.

“Global types” on page 7-9

Customize generated global type
identifiers.

“Field name of global types” on page 7-12

Customize generated field names of global
types.

“Subsystem methods” on page 7-15

Customize generated function names for
reusable subsystems.

18

“Subsystem method arguments” on page 7-

Customize generated function argument
names for reusable subsystems.

“Local temporary variables” on page 7-20

Customize generated local temporary
variable identifiers.

“Local block output variables” on page 7-
23

Customize generated local block output
variable identifiers.

“Constant macros” on page 7-25

Customize generated constant macro
identifiers.

“Shared utilities” on page 7-28

Customize shared utility identifiers.

“Minimum mangle length” on page 7-31

Specify the minimum number of characters
for generating name-mangling text to help
avoid name collisions.

“Maximum identifier length” on page 7-33

Specify maximum number of characters in
generated function, type definition,
variable names.

Model Configuration Parameters: Code Generation Symbols

Parameter

Description

“System-generated identifiers” on page 7-
35

Specify whether the code generator uses
shorter, more consistent names for

the $N token in system-generated
identifiers.

“Generate scalar inlined parameters as” on
page 7-40

Control expression of scalar inlined
parameter values in the generated code.

“Use the same reserved names as
Simulation Target” on page 7-55

Specify whether to use the same reserved
names as those specified in the
Simulation Target pane.

“Reserved names” on page 7-57

Enter the names of variables or functions
in the generated code that match the
names of variables or functions specified in
custom code.

The following configuration parameters are u

nder the Advanced parameters.

Parameter

Description

“Shared checksum length” on page 10-71

Specify character length of SC token.

“EMX array utility functions identifier
format” on page 10-73

Customize generated identifiers for
emxArray (embeddable mxArray) utility
functions.

“EMX array types identifier format” on
page 10-76

Customize generated identifiers for
emxArray (embeddable mxArray) types.

“Custom token text” (Embedded Coder)

Specify text to insert for $U token.

“Signal naming” on page 7-43

Specify rules for naming signals in
generated code.

“M-function” on page 7-45

“Parameter naming” on page 7-47

Specify rule for naming parameters in
generated code.

“M-function” on page 7-49

“#define naming” on page 7-51

Specify rule for naming #define
parameters (defined with storage class
Define (Custom)) in generated code.

“M-function” on page 7-53

7 Code Generation Parameters: Symbols

See Also

More About

“Code Appearance”

“Model Configuration”

7-4

Code Generation: Symbols Tab Overview

Code Generation: Symbols Tab Overview

Select the automatically generated identifier naming rules.

See Also

Related Examples
“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Construction of Generated Identifiers”
“Identifier Name Collisions and Mangling”
“Specify Identifier Length to Avoid Naming Collisions”
“Specify Reserved Names for Generated Identifiers”
“Customize Generated Identifier Naming Rules” (Embedded Coder)

7-5

7 Code Generation Parameters: Symbols

Global variables

7-6

Description
Customize generated global variable identifiers.

Category: Code Generation > Symbols

Settings
Default: SRSNSM

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format
tokens.

Token Description

SM Insert name-mangling text if required to avoid naming collisions.
Required.

SN Insert name of object (block, signal or signal object, state, parameter or

parameter object) for which identifier is being generated.

SR Insert root model name into identifier, replacing unsupported
characters with the underscore (_) character.

Required for model referencing.

$U Insert text that you specify for the SU token. Use the Custom token
text parameter to specify this text.

Tips

* Avoid name collisions in general. One way is to avoid using default block names (for
example, Gainl, Gain2...) when your model has many blocks of the same type.

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

Global variables

+ To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U] in your macro. See “Control Case with Token

Decorators” (Embedded Coder).

+ If you specify SR, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the $R and SM tokens.

* When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator
preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

* This parameter setting only determines the name of objects, such as signals and
parameters, if the object is set to Auto.

* For referenced models, if the Global variables parameter does not contain a $R
token (which represents the name of the reference model), code generation prepends
the $R token to the identifier format.

You can use the Model Advisor to identify models in a model referencing hierarchy for
which code generation changes configuration parameter settings.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check code generation identifier formats used for model
reference check.

Dependency

* This parameter appears only for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrGlobalVar
Type: character vector

Value: valid combination of tokens
Default: SRSNSM

7-7

7 Code Generation Parameters: Symbols

7-8

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting

No impact
Use default
No impact

No recommendation

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)

“Control Name Mangling in Generated Identifiers” (Embedded Coder)

“Avoid Identifier Name Collisions with Referenced Models” (Embedded Coder)

“Identifier Format Control Parameters Limitations” (Embedded Coder)

Global types

Global types

Description
Customize generated global type identifiers.

Category: Code Generation > Symbols

Settings
Default: SNSRSM T

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.
Token Description
SM Insert name-mangling text if required to avoid naming collisions.
Required.
SN Insert name of object (block, signal or signal object, state, parameter or
parameter object) for which identifier is being generated.
SR Insert root model name into identifier, replacing unsupported
characters with the underscore () character.
Required for model referencing.
S$U Insert text that you specify for the $U token. Use the Custom token
text parameter to specify this text.
Tips

* Avoid name collisions in general. One way is to avoid using default block names (for
example, Gainl, Gain2...) when your model has many blocks of the same type.

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

7-9

7 Code Generation Parameters: Symbols

7-10

To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U] in your macro. See “Control Case with Token

Decorators” (Embedded Coder).

If you specify SR, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the SR and $M tokens.

When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator
preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

Name mangling conventions do not apply to type names (that is, typedef
statements) generated for global data types. The Maximum identifier length
setting does not apply to type definitions. If you specify SR, the code generator
includes the model name in the typedef.

This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

For referenced models, if the Global types parameter does not contain a SR token
(which represents the name of the reference model), code generation prepends the SR
token to the identifier format.

You can use the Model Advisor to identify models in a model referencing hierarchy for
which code generation changes configuration parameter settings.

In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

3 Run the Check code generation identifier formats used for model
reference check.

Dependency

This parameter appears only for ERT-based targets.

This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrType
Type: character vector

Value: valid combination of tokens

See Also

Default: SNSR$SM T

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting

No impact
Use default
No impact

No recommendation

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)

“Control Name Mangling in Generated Identifiers” (Embedded Coder)

“Avoid Identifier Name Collisions with Referenced Models” (Embedded Coder)

“Identifier Format Control Parameters Limitations” (Embedded Coder)

7-11

7 Code Generation Parameters: Symbols

Field name of global types

7-12

Description

Customize generated field names of global types.

Category: Code Generation > Symbols

Settings

Default: sNSM

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.

Token Description

SA Insert data type acronym into signal and work vector identifiers. For
example, 132 for int32 t.

SH Insert tag indicating system hierarchy level. For root-level blocks, the
tag is the text root . For blocks at the subsystem level, the tag is of the
form sN_, where N is a unique system number assigned by the Simulink
software.

$M Insert name-mangling text if required to avoid naming collisions.
Required.

SN Insert name of object (block, signal or signal object, state, parameter or
parameter object) for which identifier is being generated.

SU Insert text that you specify for the $U token. Use the Custom token
text parameter to specify this text.

Tips

* Avoid name collisions in general. One way is to avoid using default block names (for
example, Gainl, Gain2...) when your model has many blocks of the same type.

See Also

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

* To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U_] in your macro. See “Control Case with Token
Decorators” (Embedded Coder).

* The Maximum identifier length setting does not apply to type definitions.

* This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

* This parameter appears only for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrField
Type: character vector

Value: valid combination of tokens
Default: $NSM

Recommended Settings

Application Setting

Debugging No impact
Traceability Use default
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

. “Model Configuration Parameters: Code Generation Symbols” on page 7-2

7-13

7 Code Generation Parameters: Symbols

. “Identifier Format Control” (Embedded Coder)
. “Control Name Mangling in Generated Identifiers” (Embedded Coder)

. “Identifier Format Control Parameters Limitations” (Embedded Coder)

7-14

Subsystem methods

Subsystem methods

Description

Customize generated function names for reusable subsystems.

Category: Code Generation > Symbols

Settings

Default: SRSNSMSFEF

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.

Token Description

SF Insert method name (for example, Update for update method).

SH Insert tag indicating system hierarchy level. For root-level blocks, the
tag is the text root . For blocks at the subsystem level, the tag is of the
form sN_, where N is a unique system number assigned by the Simulink
software.

Empty for Stateflow functions.

S$M Insert name-mangling text if required to avoid naming collisions.
Required.

SN Insert name of object (block, signal or signal object, state, parameter or
parameter object) for which identifier is being generated.

SR Insert root model name into identifier, replacing unsupported
characters with the underscore () character.

Required for model referencing.

$U Insert text that you specify for the $U token. Use the Custom token

text parameter to specify this text.

7-15

7 Code Generation Parameters: Symbols

7-16

Tips

Avoid name collisions in general. One way is to avoid using default block names (for
example, Gainl, Gain2...) when your model has many blocks of the same type.

Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U_] in your macro. See “Control Case with Token
Decorators” (Embedded Coder).

If you specify $R, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the SR and $M tokens.

When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator
preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

Name mangling conventions do not apply to type names (that is, typedef
statements) generated for global data types. The Maximum identifier length
setting does not apply to type definitions. If you specify $R, the code generator
includes the model name in the typedef.

This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

For referenced models, if the Subsystem methods parameter does not contain a $R
token (which represents the name of the reference model), code generation prepends
the SR token to the identifier format.

You can use the Model Advisor to identify models in a model referencing hierarchy for
which code generation changes configuration parameter settings.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check code generation identifier formats used for model
reference check.

See Also

Dependency

This parameter appears only for ERT-based targets.

This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrFcn
Type: character vector

Value: valid combination of tokens
Default: SRSNSMSF

Recommended Settings

Application Setting

Debugging No impact
Traceability Use default
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)
“Control Name Mangling in Generated Identifiers” (Embedded Coder)
“Avoid Identifier Name Collisions with Referenced Models” (Embedded Coder)

“Identifier Format Control Parameters Limitations” (Embedded Coder)

7-17

7 Code Generation Parameters: Symbols

Subsystem method arguments

Description

Customize generated function argument names for reusable subsystems.

Category: Code Generation > Symbols

Settings

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated argument name. The macro can include a combination of the following

format tokens.

Token Description

SI + Insert u if the argument is an input.
+ Insert y if the argument is an output.
* Insert uy if the argument is an input and output.
Optional.

SM Insert name-mangling text if required to avoid naming collisions.
Required.

SN Insert name of object (block, signal or signal object, state, parameter or
parameter object) for which identifier is being generated.
Recommended to maximize readability of generated code.

$U Insert text that you specify for the $U token. Use the Custom token
text parameter to specify this text.

Tips

* Avoid name collisions in general. One way is to avoid using default block names (for
example, Gainl, Gain2...) when your model has many blocks of the same type.

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

7-18

See Also

To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U] in your macro. See “Control Case with Token

Decorators” (Embedded Coder).

Dependencies

This parameter:

Appears only for ERT-based targets.

Requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrFcnArg
Type: character vector

Value: valid combination of tokens
Default: rt SISNSM

Recommended Settings

Application Setting

Debugging No impact
Traceability Use default
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)
“Control Name Mangling in Generated Identifiers” (Embedded Coder)

“Identifier Format Control Parameters Limitations” (Embedded Coder)

7-19

7 Code Generation Parameters: Symbols

Local temporary variables

Description

Customize generated local temporary variable identifiers.

Category: Code Generation > Symbols

Settings

Default: $SNsM

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.

Token

Description

SA

Insert data type acronym (for example, 132 for integers) into signal and
work vector identifiers.

SM

Insert name-mangling text if required to avoid naming collisions.

Required.

SN

Insert name of object (block, signal or signal object, state, parameter, or
parameter object) for which identifier is generated.

SR

Insert root model name into identifier, replacing unsupported
characters with the underscore () character.

Required for model referencing.

$U

Insert text that you specify for the $U token. Use the Custom token
text parameter to specify this text.

Tips

* Avoid name collisions. One way is to avoid using default block names (for example,
Gainl, Gain2...) when your model has many blocks of the same type.

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers that you expect to generate. Reserve at least three characters
for name-mangling text.

7-20

Local temporary variables

+ To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U] in your macro. See “Control Case with Token

Decorators” (Embedded Coder).

+ If you specify SR, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the $R and SM tokens.

* When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator
preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

* This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

* This parameter appears only for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrTmpVar
Type: character vector

Value: valid combination of tokens
Default: SNSM

Recommended Settings

Application Setting

Debugging No impact
Traceability Use default
Efficiency No impact

Safety precaution No recommendation

7-21

7 Code Generation Parameters: Symbols

See Also

Related Examples
“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)
“Control Name Mangling in Generated Identifiers” (Embedded Coder)
“Avoid Identifier Name Collisions with Referenced Models” (Embedded Coder)

“Identifier Format Control Parameters Limitations” (Embedded Coder)

7-22

Local block output variables

Local block output variables

Description

Customize generated local block output variable identifiers.

Category: Code Generation > Symbols

Settings
Default: rtb $NsM

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.
Token Description
SA Insert data type acronym (for example, 132 for integers) into signal and
work vector identifiers.
$M Insert name-mangling text if required to avoid naming collisions.
Required.
SN Insert name of object (block, signal or signal object, state, parameter or
parameter object) for which identifier is being generated.
$U Insert text that you specify for the SU token. Use the Custom token
text parameter to specify this text.
Tips

* Avoid name collisions in general. One way is to avoid using default block names (for
example, Gainl, Gain2...) when your model has many blocks of the same type.

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

* To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U] in your macro. See “Control Case with Token

Decorators” (Embedded Coder).

7-23

7 Code Generation Parameters: Symbols

7-24

* This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

* This parameter appears only for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrB1kIO
Type: character vector

Value: valid combination of tokens
Default: rtb $NSM

Recommended Settings

Application Setting

Debugging No impact
Traceability Use default
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

. “Model Configuration Parameters: Code Generation Symbols” on page 7-2
. “Identifier Format Control” (Embedded Coder)

. “Control Name Mangling in Generated Identifiers” (Embedded Coder)

. “Identifier Format Control Parameters Limitations” (Embedded Coder)

Constant macros

Constant macros

Description
Customize generated constant macro identifiers.

Category: Code Generation > Symbols

Settings
Default: SRSNSM

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.
Token Description
SM Insert name-mangling text if required to avoid naming collisions.
Required.
SN Insert name of object (block, signal or signal object, state, parameter or
parameter object) for which identifier is being generated.
SR Insert root model name into identifier, replacing unsupported
characters with the underscore () character.
Required for model referencing.
S$U Insert text that you specify for the $U token. Use the Custom token
text parameter to specify this text.
Tips

* Avoid name collisions in general. One way is to avoid using default block names (for
example, Gainl, Gain2...) when your model has many blocks of the same type.

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

7-25

7 Code Generation Parameters: Symbols

7-26

To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U] in your macro. See “Control Case with Token

Decorators” (Embedded Coder).

If you specify SR, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the $R and SM tokens.

When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator

preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

For referenced models, if the Constant macros parameter does not contain a SR
token (which represents the name of the reference model), code generation prepends
the $R token to the identifier format.

You can use the Model Advisor to identify models in a model referencing hierarchy for
which code generation changes configuration parameter settings.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check code generation identifier formats used for model
reference check.

Dependency

This parameter appears only for ERT-based targets.

This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrMacro
Type: character vector

Value: valid combination of tokens
Default: SRSNSM

See Also

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting

No impact
Use default
No impact

No recommendation

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)

“Control Name Mangling in Generated Identifiers” (Embedded Coder)

“Avoid Identifier Name Collisions with Referenced Models” (Embedded Coder)

“Identifier Format Control Parameters Limitations” (Embedded Coder)

7-27

7 Code Generation Parameters: Symbols

Shared utilities

7-28

Description

Customize shared utility identifiers.

Category: Code Generation > Symbols

Settings

Default: $NSC

Customize generated shared utility identifier names.

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.

Token Description

SN Insert name of object (block, signal or signal object, state, parameter, or
parameter object) for which identifier is generated. Optional.

$C Insert eight-character conditional checksum when $N is not specified or
the Maximum identifier length does not accommodate the full length
of $N. Modify checksum character length by using Shared checksum
length parameter. Required.

SR Insert root model name into identifier, replacing unsupported
characters with the underscore (_) character.

S$U Insert text that you specify for the $U token. Use the Custom token
text parameter to specify this text.

Tips

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers that you expect to generate.

* The checksum token S$C is required. If $C is specified without SN or $R, the checksum
is included in the identifier name. Otherwise, the code generator includes the
checksum when necessary to prevent name collisions.

Shared utilities

+ To control the case (upper or lower case) of the text that each token represents,
include decorators such as [U] in your macro. See “Control Case with Token

Decorators” (Embedded Coder).

+ If you specify $N or SR, then the checksum is only included in the name when the
identifier length is too short to accommodate the fully expanded format text. The code
generator includes the checksum and truncates SN or SR until the length is equal to

Maximum identifier length. When necessary, an underscore is inserted to separate

tokens.

+ If you specify $N and SR, then the checksum is only included in the name when the
identifier length is too short to accommodate the fully expanded format text. The code
generator includes the checksum and truncates SN until the length is equal to

Maximum identifier length. When necessary, an underscore is inserted to separate

tokens.
* Descriptive text helps make the identifier name more accessible.

* For versions prior to R2016a, the Shared utilities parameter does not support the
SR token. For a model, if the Shared utilities parameter includes a $R token, and
you export the model to a version prior to R2016a, the Shared utilities parameter
defaults to $SNSC.

Dependency

This parameter:

+ Appears only for ERT-based targets.

* Requires Embedded Coder when generating code.

Command-Line Information
Parameter: CustomSymbolStrUtil
Type: character vector

Value: valid combination of tokens
Default: SNSC

Recommended Settings
Application Setting
Debugging No impact

7-29

7 Code Generation Parameters: Symbols

Application Setting

Traceability Use default
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)

“Exceptions to Identifier Formatting Conventions” (Embedded Coder)

7-30

Minimum mangle length

Minimum mangle length

Description

Increase the minimum number of characters for generating name-mangling text to help
avoid name collisions.

Category: Code Generation > Symbols

Settings
Default: 1

Specify an integer value that indicates the minimum number of characters the code
generator uses when generating name-mangling text. The maximum possible value is 15.
The minimum value automatically increases during code generation as a function of the
number of collisions. A larger value reduces the chance of identifier disturbance when
you modify the model.

Tips

* Minimize disturbance to the generated code during development by specifying a value
of 4. This value is conservative. It allows for over 1.5 million collisions for a particular
identifier before the mangle length increases.

* Set the value to reserve at least three characters for the name-mangling text. The
length of the name-mangling text increases as the number of name collisions
increases.

Dependency
* This parameter appears only for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: MangleLength
Type: integer

7-31

7 Code Generation Parameters: Symbols

Value: value between 1 and 15
Default: 1

Recommended Settings

Application Setting
Debugging No impact
Traceability 1
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Control Name Mangling in Generated Identifiers” (Embedded Coder)
“Maintain Traceability for Generated Identifiers” (Embedded Coder)

7-32

Maximum identifier length

Maximum identifier length

Description

Specify maximum number of characters in generated function, type definition, variable
names.

Category: Code Generation > Symbols

Settings

Default: 31
Minimum: 31
Maximum: 256

You can use this parameter to limit the number of characters in function, type definition,
and variable names.

Tips
* Consider increasing identifier length for models having a deep hierarchical structure.

* When generating code from a model that uses model referencing, the Maximum
identifier length must be large enough to accommodate the root model name, and
possibly, the name-mangling text. A code generation error occurs if Maximum
identifier length is too small.

+ This parameter must be the same for both top-level and referenced models.

* When a name conflict occurs between a symbol within the scope of a higher level
model and a symbol within the scope of a referenced model, the symbol from the
referenced model is preserved. Name mangling is performed on the symbol from the
higher level model.

Command-Line Information
Parameter: MaxIdLength
Type: integer

Value: valid value

Default: 31

7-33

7 Code Generation Parameters: Symbols

Recommended Settings

Application Setting
Debugging Valid value
Traceability >30
Efficiency No impact
Safety precaution >30

See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Construction of Generated Identifiers”
“Identifier Name Collisions and Mangling”

“Identifier Format Control” (Embedded Coder)

7-34

System-generated identifiers

System-generated identifiers

Description

Specify whether the code generator uses shorter, more consistent names for the $N token
in system-generated identifiers.

Category: Code Generation > Symbols

Settings
Default: Shortened

Classic
Generate longer identifier names, which are used by default before R2013a, for the
$N token. For example, for a model named sym, if:
* “Global variables” on page 7-6 is NR$M, the block state identifier is sym DWork.
+ “Global types” on page 7-9 is SRSNSM, the block state type is a structure named
D Work sym.
Shortened

Shorten i1dentifier names for the SN token to allow more space for user names. This
option provides a more predictable and consistent naming system that uses camel
case, no underscores or plurals, and consistent abbreviations for both a type and a
variable. For example, for a model named sym, if:

* “Global variables” on page 7-6 is NR$M, the block state identifier is sym Dw.

+ “Global types” on page 7-9 is SRSNSM, the block state type is a structure named
DW_sym.

7-35

7 Code Generation Parameters: Symbols

System-generated identifiers per model

Classic Shortened Data Representation Description

BlockIO, B B Type, Global Variable |Block signals of the
system

ExternalInputs ExtU Type Block input data for
root system

ExternallnputSizes |ExtUSize Type Size of block input data
for the root system
(used when inputs are
variable dimensions)

ExternalOutputs ExtY Type Block output data for
the root system

ExternalOutputSize |ExtYSize Type Size of block output

S data for the root system

U U Global Variable Input data

USize USize Global Variable Size of input data

Y Y Global Variable Output data

YSize YSize Global Variable Size of output data

Parameters P Type, Global Variable |Parameters for the
system

ConstBlockIO ConstB Const Type, Global Block inputs and

Variable outputs that are

constants

MachinelLocalData, |[MachLocal Const Type, Global Used by ERT S-

Machine Variable function targets

ConstParam, ConstP |ConstP Const Type, Global Constant parameters in

Variable the system

ConstParamWithInit [ConstInitP Const Type, Global Initialization data for

, ConstWithInitP Variable constant parameters in
the system

D Work, DWork DW Type, Global Variable |Block states in the

system

7-36

System-generated identifiers

Classic Shortened Data Representation Description

MassMatrixGlobal MassMatrix Type, Global Variable |Used for physical
modeling blocks

PrevZCSigStates, PrevZzCX Type, Global Variable |Previous zero-crossing

PrevZCSigState signal state

ContinuousStates, [X Type, Global Variable |Continuous states

X

StateDisabled, XDis Type, Global Variable |Status of an enabled

Xdis subsystem

StateDerivatives, |XDot Type, Global Variable |Derivatives of

Xdot continuous states at
each time step

ZCSignalValues, ZCV Type, Global Variable |Zero-crossing signals

ZCSignalValue

DefaultParameters |[DefaultP Global Variable Default parameters in
the system

GlobalTID GlobalTID Global Variable Used for sample time
for states in referenced
models

InvariantSignals Invariant Global Variable Invariant signals

NSTAGES NSTAGES Global Variable Solver macro

Object 0bj Global Variable Used by ERT C++ code
generation to refer to
referenced model
objects

TimingBridge TimingBrdg Global Variable Timing information

stored in different data
structures

7-37

7 Code Generation Parameters: Symbols

System-generated identifier names per referenced model or reusable subsystem

Classic Shortened Data Representation Description

rtB, B B Type, Global Variable |Block signals of the
system

rtC, C ConstB Type, Global Variable |Block inputs and
outputs that are
constants

rtDW, DW DW Type, Global Variable |Block states in the
system

rtMdlrefDWork, Md1RefDW Type, Global Variable |Block states in

MdlrefDWork referenced model

rtP, P P Type, Global Variable |Parameters for the
system

rtRTM, RTM RTM Type, Global Variable |RT_Model structure

rt¥, X X Type, Global Variable |Continuous states in
model reference

rtXdis, Xdis XDis Type, Global Variable |Status of an enabled
subsystem

rtXdot, Xdot XDot Type, Global Variable |Derivatives of the S-
function's continuous
states at each time step

rtZCE, ZCE ZCE Type, Global Variable |Zero-crossing enabled

rtzZCsv, ZCSV ZCV Type, Global Variable |Zero-crossing signal
values

Dependencies

* This parameter appears only for ERT-based targets.

* When generating code, this parameter requires an Embedded Coder license.

Command-Line Information
Parameter: InternalIdentifier

Type: character vector

7-38

See Also

Value: Classic | Shortened
Default: Shortened

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2

Setting

No impact
No impact
No impact

No impact

“Construction of Generated Identifiers”

“Identifier Name Collisions and Mangling”

“Specify Identifier Length to Avoid Naming Collisions”

“Specify Reserved Names for Generated Identifiers”

“Default Data Structures in the Generated Code”

“Customize Generated Identifier Naming Rules” (Embedded Coder)
“Identifier Format Control” (Embedded Coder)

7-39

7 Code Generation Parameters: Symbols

Generate scalar inlined parameters as

Description

Control expression of scalar inlined parameter values in the generated code. Block
parameters appear inlined in the generated code when you set Configuration
Parameters > Optimization > Signals and Parameters > Default parameter
behavior to Tnlined.

Category: Code Generation > Symbols

Settings
Default: Literals

Literals
Generates scalar inlined parameters as numeric constants.
Macros

Generates scalar inlined parameters as variables with #define macros. This setting
makes generated code more readable.

Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: InlinedPrmAccess
Type: character vector

Value: Literals | Macros
Default: Literals

Recommended Settings

Application Setting
Debugging No impact

7-40

Generate scalar inlined parameters as

Application
Traceability
Efficiency

Safety precaution

Setting
Macros
No impact

No impact

Improve Code Readability by Generating Block Parameter Values as

Macros

When you generate efficient code by inlining the numeric values of block parameters
(with the configuration parameter Default parameter behavior), you can configure
scalar parameters to appear as macros instead of literal numbers. Each macro has a
unique name that is based on the name of the corresponding block parameter.

Open the example model sldemo fuelsys dd controller.

sldemo fuelsys dd controller

 In

validate_sample_time

85 0

Fuel Rate Controller

| 5ENEDTE .
Ig's)
est_aarflow | &st_airflow
iy [EZ4] e
| OZ_normal
fb_coraction fb_coaraction fuel_rat=
) i 1 £ i .sguel rate

@ EngSensors
- £ sensors

sansors

O
es th _

fuel_mode

controd_logic

fuel_mode 1o's}
girflow_calc
. i fuel_moda

fuel_calz

Copyright 1920-2015 The MathWarks, Inc.

The model uses these configuration parameter settings:

* Default parameter behavior set to Inlined.

+ System target file set to ert.tlc.

7-41

7 Code Generation Parameters: Symbols

7-42

Set the configuration parameter Generate scalar inlined parameters as to Macros.

set param('sldemo fuelsys dd controller', 'InlinedPrmAccess', 'Macros')

Generate code from the model.
rtwbuild('sldemo fuelsys dd controller')

Starting build procedure for model: sldemo fuelsys dd controller
Successful completion of code generation for model: sldemo fuelsys dd controller

The header file sldemo fuelsys dd controller private.h defines several macros
that represent inlined (nontunable) block parameters. For example, the macros
rtCP_DiscreteFilter NumCoe EL O and rtCP DiscreteFilter NumCoe EL 1
represent floating-point constants.

file = fullfile('sldemo fuelsys dd controller ert rtw',...
'sldemo fuelsys dd controller private.h');

rtwdemodbtype (file, '#define rtCP_DiscreteFilter NumCoe EL 0',...
'rtCP DiscreteFilter NumCoe EL 1',1,1)

#define rtCP DiscreteFilter NumCoe EL O (8.7696F)
#define rtCP DiscreteFilter NumCoe EL 1 (-8.5104F)

The comments above the macro definitions indicate that the code generated for a
Discrete Filter block uses the macros.

rtwdemodbtype (file, 'Computed Parameter: DiscreteFilter NumCoef', ...
'Referenced by: ''<S12>/Discrete Filter''',1,1)

/* Computed Parameter: DiscreteFilter NumCoef
* Referenced by: '<S12>/Discrete Filter'

Click the hyperlink to navigate to the block in the model.

See Also

Related Examples

. “Model Configuration Parameters: Code Generation Symbols” on page 7-2

Signal naming

Signal naming

Description
Specify rules for naming signals in generated code.

Category: Code Generation > Symbols

Settings
Default: None

None

Does not change signal names when creating corresponding identifiers in generated
code. Signal identifiers in the generated code match the signal names that appear in
the model.

Force upper case

Uses uppercase characters when creating identifiers for signal names in the
generated code.

Force lower case

Uses lowercase characters when creating identifiers for signal names in the
generated code.

Custom M-function

Uses the MATLAB function specified with the M-function parameter to create
identifiers for signal names in the generated code.

Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.
+ Setting this parameter to Custom M-function enables M-function.

+ This parameter must be the same for top-level and referenced models.

+ If you give a value to the Alias parameter of a Simulink.Signal data object, that
value overrides the specification of the Signal naming parameter.

7-43

7 Code Generation Parameters: Symbols

Limitation

This parameter does not impact signal names that are specified by an embedded signal
object created using the Code Generation tab of a Signal Properties dialog box. See
“Programmatically Apply Custom Storage Classes Directly to Signals, States, and
Outport Blocks Using Embedded Signal Objects” (Embedded Coder) for information
about embedded signal objects.

Command-Line Information

Parameter: SignalNamingRule

Type: character vector

Value: None | UpperCase | LowerCase | Custom
Default: None

Recommended Settings

Application Setting

Debugging No impact
Traceability Force upper case
Efficiency No impact

Safety precaution No impact

See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Apply Naming Rules to Simulink Data Objects” (Embedded Coder)
“Programming Scripts and Functions” (MATLAB)

7-44

M-function

M-function

Description

Specify rule for naming identifiers in generated code.

Category: Code Generation > Symbols

Settings
Default: '’

Enter the name of a MATLAB language file that contains the naming rule to be applied
to signal, parameter, or #define parameter identifiers in generated code. Examples of
rules you might program in such a MATLAB function include:

* Remove underscore characters from signal names.

* Add an underscore before uppercase characters in parameter names.

* Make identifiers uppercase in generated code.

For example, the following function returns an identifier name by appending the text
_signal to a signal data object name.

function revisedName = append text (name, object)
APPEND TEXT: Returns an identifier for generated
code by appending text to a data object name.

o oo oe

oe

Input arguments:
name: data object name as spelled in model
object: target data object

o oo oe

oe

Output arguments:
revisedName: altered identifier returned for use in
generated code.

o0 oo oe

oe

text = ' signal';

revisedName = [name, text];

7-45

7 Code Generation Parameters: Symbols

Tip
The MATLAB language file must be in the MATLAB path.

Dependencies

This parameter appears only for ERT-based targets.
This parameter requires an Embedded Coder license when generating code.
This parameter is enabled by Signal naming.

This parameter must be the same for top-level and referenced models.

Command-Line Information
Parameter: SignalNamingFcn

Type: character vector
Value: MATLAB language file
Default: '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Specify Naming Rule Using a Function” (Embedded Coder)
“Programming Scripts and Functions” (MATLAB)

7-46

Parameter naming

Parameter naming

Description
Specify rule for naming parameters in generated code.

This parameter does not affect Simulink.LookupTable or Simulink.Breakpoint
objects.

Category: Code Generation > Symbols

Settings
Default: None

None

Does not change parameter names when creating corresponding identifiers in
generated code. Parameter identifiers in the generated code match the parameter
names that appear in the model.

Force upper case

Uses uppercase characters when creating identifiers for parameter names in the
generated code.

Force lower case

Uses lowercase characters when creating identifiers for parameter names in the
generated code.

Custom M-function

Uses the MATLAB function specified with the M-function parameter to create
identifiers for parameter names in the generated code.

Dependencies

* This parameter appears only for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.
+ Setting this parameter to Custom M-function enables M-function.

* This parameter must be the same for top-level and referenced models.

7-47

7 Code Generation Parameters: Symbols

Command-Line Information

Parameter: ParamNamingRule

Type: character vector

Value: None | UpperCase | LowerCase | Custom
Default: None

Recommended Settings

Application Setting

Debugging No impact
Traceability Force upper case
Efficiency No impact

Safety precaution No impact

See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Apply Naming Rules to Simulink Data Objects” (Embedded Coder)
“Programming Scripts and Functions” (MATLAB)

7-48

M-function

M-function

Description

Specify rule for naming identifiers in generated code.

Category: Code Generation > Symbols

Settings
Default: '’

Enter the name of a MATLAB language file that contains the naming rule to be applied
to signal, parameter, or #define parameter identifiers in generated code. Examples of
rules you might program in such a MATLAB function include:

* Remove underscore characters from signal names.

* Add an underscore before uppercase characters in parameter names.

* Make identifiers uppercase in generated code.

For example, the following function returns an identifier name by appending the text
_param to a parameter data object name.

function revisedName = append text (name, object)

% APPEND TEXT: Returns an identifier for generated

% code by appending text to a data object name.

% Input arguments:

% name: data object name as spelled in model

% object: target data object

% Output arguments:

% revisedName: altered identifier returned for use in
% generated code.

text = ' param';

revisedName = [name, text];

7-49

7 Code Generation Parameters: Symbols

Tip
The MATLAB language file must be in the MATLAB path.

Dependencies

This parameter appears only for ERT-based targets.
This parameter requires an Embedded Coder license when generating code.
This parameter is enabled by Parameter naming.

This parameter must be the same for top-level and referenced models.

Command-Line Information
Parameter: ParamNamingFcn

Type: character vector
Value: MATLAB language file
Default: '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Specify Naming Rule Using a Function” (Embedded Coder)
“Programming Scripts and Functions” (MATLAB)

7-50

#define naming

#define naming

Description

Specify rule for naming #define parameters (defined with storage class Define
(Custom)) in generated code.

Category: Code Generation > Symbols

Settings

Default: None

None

Does not change #define parameter names when creating corresponding identifiers
in generated code. Parameter identifiers in the generated code match the parameter
names that appear in the model.

Force upper case

Uses uppercase characters when creating identifiers for #define parameter names
in the generated code.

Force lower case

Uses lowercase characters when creating identifiers for #define parameter names
in the generated code.

Custom M-function

Uses the MATLAB function specified with the M-function parameter to create
identifiers for #define parameter names in the generated code.

Dependencies

* This parameter appears only for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.
+ Setting this parameter to Custom M-function enables M-function.

* This parameter must be the same for top-level and referenced models.

7-51

7 Code Generation Parameters: Symbols

Command-Line Information

Parameter: DefineNamingRule

Type: character vector

Value: None | UpperCase | LowerCase | Custom
Default: None

Recommended Settings

Application Setting

Debugging No impact
Traceability Force upper case
Efficiency No impact

Safety precaution No impact

See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Specify Naming Rule for Storage Class Define” (Embedded Coder)
“Programming Scripts and Functions” (MATLAB)

7-52

M-function

M-function

Description

Specify rule for naming identifiers in generated code.

Category: Code Generation > Symbols

Settings
Default: '’

Enter the name of a MATLAB language file that contains the naming rule to be applied
to signal, parameter, or #define parameter identifiers in generated code. Examples of
rules you might program in such a MATLAB function include:

* Remove underscore characters from signal names.

* Add an underscore before uppercase characters in parameter names.

* Make identifiers uppercase in generated code.

For example, the following function returns an identifier name by appending the text
_define to a data object name.

function revisedName = append text (name, object)
APPEND TEXT: Returns an identifier for generated
code by appending text to a #define data object name.

o oo oe

oe

Input arguments:
name: data object name as spelled in model
object: target data object

o oo oe

oe

Output arguments:
revisedName: altered identifier returned for use in
generated code.

o oo oe

oe

text = ' define';

revisedName = [name, text];

7-53

7 Code Generation Parameters: Symbols

Tip
The MATLAB language file must be in the MATLAB path.

Dependencies

This parameter appears only for ERT-based targets.
This parameter requires an Embedded Coder license when generating code.
This parameter is enabled by #define naming.

This parameter must be the same for top-level and referenced models.

Command-Line Information
Parameter: DefineNamingFcn

Type: character vector
Value: MATLAB language file
Default: '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Specify Naming Rule Using a Function” (Embedded Coder)
“Programming Scripts and Functions” (MATLAB)

7-54

Use the same reserved names as Simulation Target

Use the same reserved names as Simulation Target

Description

Specify whether to use the same reserved names as those specified in the Simulation
Target pane.

Category: Code Generation > Symbols

Settings
Default: Off

On
Enables using the same reserved names as those specified in the Simulation

Target pane.

Off

Disables using the same reserved names as those specified in the Simulation
Target pane.

Command-Line Information
Parameter: UseSimReservedNames
Type: character vector

Value: 'on' | 'off"

Default: 'off"

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

7-55

7 Code Generation Parameters: Symbols

See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2

7-56

Reserved names

Reserved names

Description

Enter the names of variables or functions in the generated code that match the names of
variables or functions specified in custom code.

Category: Code Generation > Symbols

Settings
Default: {}

This action changes the names of variables or functions in the generated code to avoid
name conflicts with identifiers in custom code. Reserved names must be shorter than 256
characters.

Tips
* Do not enter code generator keywords since these names cannot be changed in the
2 : [13 »
generated code. For a list of keywords to avoid, see “Reserved Keywords”.
+ Start each reserved name with a letter or an underscore to prevent error messages.
* Each reserved name must contain only letters, numbers, or underscores.
+ Separate the reserved names using commas or spaces.

* You can also specify reserved names by using the command line:

config param object.set param('ReservedNameArray', {'abc', 'xyz'})

where config_param_object is the object handle to the model settings in the
Configuration Parameters dialog box.

Command-Line Information
Parameter: ReservedNameArray
Type: cell array of character vectors

Value: reserved names shorter than 256 characters
Default: {}

7-57

7 Code Generation Parameters: Symbols

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2

7-58

Code Generation Parameters: Custom
Code

8 Code Generation Parameters: Custom Code

Model Configuration Parameters: Code Generation Custom
Code

The Code Generation > Custom Code category includes parameters for inserting
custom C code into the generated code. These parameters require a Simulink Coder
license.

On the Configuration Parameters dialog box, the following configuration parameters are
on the Code Generation > Custom Code pane.

Parameter Description
“Use the same custom code settings as Specify whether to use the same custom
Simulation Target” on page 8-5 code settings as those in the Simulation

Target > Custom Code pane.

“Source file” on page 8-7 Specify custom code to include near the top
of the generated model source file.

“Header file” on page 8-8 Specify custom code to include near the top
of the generated model header file.

“Initialize function” on page 8-10 Specify custom code to include in the
generated model initialize function.

“Terminate function” on page 8-11 Specify custom code to include in the
generated model terminate function.

“Include directories” on page 8-13 Specify a list of include folders to add to the
include path.

“Source files” on page 8-15 Specify a list of additional source files to
compile and link with the generated code.

“Libraries” on page 8-17 Specify a list of additional libraries to link
with the generated code.

“Defines” on page 8-19 Specify preprocessor macro definitions to
be added to the compiler command line.

8-2

See Also

See Also

More About
“Model Configuration”

8-3

8 Code Generation Parameters: Custom Code

Code Generation: Custom Code Tab Overview

8-4

Enter custom code to include in generated model files and create a list of additional
folders, source files, and libraries to use when building the model.

Configuration

1 Select the type of information to include from the list on the left side of the pane.
2 Enter custom code or enter text to identify a folder, source file, or library.
3 Click Apply.

See Also

Related Examples
“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

Use the same custom code settings as Simulation Target

Use the same custom code settings as Simulation Target

Description

Specify whether to use the same custom code settings as those in the Simulation
Target > Custom Code pane.

Category: Code Generation > Custom Code

Settings
Default: Off

|7On

Enables using the same custom code settings as those in the Simulation Target >
Custom Code pane.

I off

Disables using the same custom code settings as those in the Simulation Target >
Custom Code pane.

Command-Line Information
Parameter: RTWUseSimCustomCode
Type: character vector

Value: 'on' | 'off"

Default: 'off"

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

8-5

8 Code Generation Parameters: Custom Code

See Also

Related Examples

“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8-6

Source file

Source file

Description

Specify custom code to include near the top of the generated model source file.

Category: Code Generation > Custom Code

Settings
Default:''

The code generator places code near the top of the generated model . c or model. cpp file,
outside of any function.

Command-Line Information
Parameter: CustomSourceCode

Type: character vector
Value: C code
Default: '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8 Code Generation Parameters: Custom Code

Header file

Description

Specify custom code to include near the top of the generated model header file.

Category: Code Generation > Custom Code

Settings
Default:''

The code generator places this code near the top of the generated model .h header file. If
you are including a header file, in your custom header file add #1ifndef code. This avoids

multiple inclusions. For example, in rtwtypes.h the following #include guards are
added:

#ifndef RTW HEADER rtwtypes h
#define RTW HEADER rtwtypes h

#endif /* RTW HEADER rtwtypes h */

Command-Line Information
Parameter: CustomHeaderCode

Type: character vector
Value: C code
Default: '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

8-8

See Also

See Also
Related Examples

“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8-9

8 Code Generation Parameters: Custom Code

Initialize function

Description
Specify custom code to include in the generated model initialize function.

Category: Code Generation > Custom Code

Settings
Default: '’

The code generator places code inside the model's initialize function in the model.c or
model . cpp file.

Command-Line Information
Parameter: CustomInitializer

Type: character vector
Value: C code
Default: '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples
“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8-10

Terminate function

Terminate function

Specify custom code to include in the generated model terminate function.

Description

Specify custom code to include in the generated model terminate function.

Category: Code Generation > Custom Code

Settings
Default: '’

Specify code to appear in the model's generated terminate function in the model. c or
model . cpp file.

Dependency

A terminate function is generated only if you select the Terminate function required
check box.

Command-Line Information
Parameter: CustomTerminator

Type: character vector
Value: C code
Default: '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

8-11

8 Code Generation Parameters: Custom Code

See Also

Related Examples

“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8-12

Include directories

Include directories

Description
Specify a list of include folders to add to the include path.

Category: Code Generation > Custom Code

Settings
Default: '

Enter a space-separated list of include folders to add to the include path when compiling
the generated code.
* Specify absolute or relative paths to the folders.

+ Relative paths must be relative to the folder containing your model files, not relative
to the build folder.

* The order in which you specify the folders is the order in which they are searched for
header, source, and library files.

Note If you specify a Windows path containing one or more spaces, you must enclose the
path in double quotes. For example, the second and third paths in the Include
directories entry below must be double-quoted:

C:\Project "C:\Custom Files" "C:\Library Files"

If you set the equivalent command-line parameter CustomInclude, each path
containing spaces must be separately double-quoted within the single-quoted third
argument character vector, for example,

>> set param('mymodel', 'CustomInclude',
'C:\Project "C:\Custom Files" "C:\Library Files"')

Command-Line Information
Parameter: CustomInclude

8-13

8 Code Generation Parameters: Custom Code

Type: character vector
Value: folder path
Default: '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8-14

Source files

Source files

Description

Specify a list of additional source files to compile and link with the generated code.

Category: Code Generation > Custom Code

Settings

Default: '

Enter a space-separated list of source files to compile and link with the generated code.
Limitation

This parameter does not support Windows file names that contain embedded spaces.
Tip

You can specify just the file name if the file is in the current MATLAB folder or in one of
the include folders.

Command-Line Information
Parameter: CustomSource
Type: character vector

Value: file name

Default: '’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

8-15

8 Code Generation Parameters: Custom Code

See Also

Related Examples

“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8-16

Libraries

Libraries

Description

Specify a list of additional libraries to link with the generated code.

Category: Code Generation > Custom Code

Settings

Default: '

Enter a space-separated list of static library files to link with the generated code.
Limitation

This parameter does not support Windows file names that contain embedded spaces.
Tip

You can specify just the file name if the file is in the current MATLAB folder or in one of
the include folders.

Command-Line Information
Parameter: CustomLibrary
Type: character vector

Value: library file name
Default: '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

8-17

8 Code Generation Parameters: Custom Code

See Also

Related Examples

“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8-18

Defines

Defines

Description

Specify preprocessor macro definitions to be added to the compiler command line.

Category: Code Generation > Custom Code

Settings
Default: '’

Enter a list of macro definitions for the compiler command line. Specify the parameters
with a space-separated list of macro definitions. If a makefile is generated, these macro
definitions are added to the compiler command line in the makefile. The list can include
simple definitions (for example, -DDEF1), definitions with a value (for example, -
DDEF2=1), and definitions with a space in the value (for example, -DDEF3="my value").
Definitions can omit the -D (for example, -DF0O0O=1 and FOO=1 are equivalent). If the
toolchain uses a different flag for definitions, the code generator overrides the -D and
uses the appropriate flag for the toolchain.

Command-Line Information
Parameter: CustomDefine
Type: character vector

Value: preprocessor macro definition
Default: '’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

8-19

8 Code Generation Parameters: Custom Code

See Also

Related Examples

“Model Configuration Parameters: Code Generation Custom Code” on page 8-2

“Integrate External Code by Using Model Configuration Parameters”

8-20

Code Generation Parameters: Interface

9 Code Generation Parameters: Interface

Model Configuration Parameters: Code Generation Interface

9-2

The Code Generation > Interface category includes parameters for configuring the
interface of the generated code. These parameters require a Simulink Coder license.
Additional parameters available with an ERT-based target require an Embedded Coder

license.

On the Configuration Parameters dialog box,

on the Code Generation > Interface pane.

the following configuration parameters are

Parameter

Description

“Code replacement library” on page 9-11

Specify a code replacement library the code
generator uses when producing code for a
model.

“Shared code placement” on page 9-15

Specify the location for generating utility
functions, exported data type definitions,
and declarations of exported data with
custom storage class.

“Support: floating-point numbers” on page
9-17

Specify whether to generate floating-point
data and operations.

“Support: non-finite numbers” on page 9-
19

Specify whether to generate non-finite data
and operations on non-finite data.

“Support: complex numbers” on page 9-21

Specify whether to generate complex data
and operations.

“Support: absolute time” on page 9-23

Specify whether to generate and maintain
integer counters for absolute and elapsed
time values.

“Support: continuous time” on page 9-25

Specify whether to generate code for blocks
that use continuous time.

“Support: variable-size signals” on page 9-
28

Specify whether to generate code for
models that use variable-size signals.

“Code interface packaging” on page 9-30

Select the packaging for the generated C or
C++ code interface.

Model Configuration Parameters: Code Generation Interface

Parameter

Description

“Multi-instance code error diagnostic” on
page 9-34

Select the severity level for diagnostics
displayed when a model violates
requirements for generating multi-instance
code.

“Pass root-level I/O as” on page 9-36

Control how root-level model input and
output are passed to the reusable
model step function.

“Remove error status field in real-time
model data structure” on page 9-38

Specify whether to log or monitor error
status.

“Configure Model Functions” on page 9-40

Specify whether the code generator uses
default model initialize and

model step function prototypes or model-
specific C prototypes.

“Parameter visibility” on page 9-41

Specify whether to generate the block
parameter structure as a public,
private, or protected data member of
the C++ model class.

“Parameter access” on page 9-43

Specify whether to generate access
methods for block parameters for the C++
model class.

“External I/O access” on page 9-45

Specify whether to generate access
methods for root-level I/O signals for the C
++ model class.

“Configure C++ Class Interface” on page 9-
47

Customize the C++ class interface for your
model code.

“Generate C API for: signals” on page 9-48

Generate C API data interface code with a
signals structure.

“Generate C API for: parameters” on page
9-50

Generate C API data interface code with
parameter tuning structures.

“Generate C API for: states” on page 9-52

Generate C API data interface code with a
states structure.

“Generate C API for: root-level I/O” on page
9-54

Generate C API data interface code with a
root-level I/O structure.

9 Code Generation Parameters: Interface

9-4

Parameter

Description

“ASAP2 interface” on page 9-56

Generate code for the ASAP2 data
interface.

“External mode” on page 9-58

Generate code for the external mode data
interface.

“Transport layer” on page 9-60

Specify the transport protocol for
communications.

“MEX-file arguments” on page 9-62

Specify arguments to pass to an external
mode interface MEX-file for communicating
with executing targets.

“Static memory allocation” on page 9-64

Control memory buffer for external mode
communication.

“Static memory buffer size” on page 9-66

Specify the memory buffer size for external
mode communication.

These configuration parameters are under the Advanced parameters.

Parameter

Description

“Standard math library” on page 10-21

Specify the standard math library for your
execution environment. Verify that your
compiler supports the library you want to
use; otherwise compile-time errors can
occur.

€89/C90 (ANSI) - ISO®/MTEC 9899:1990 C
standard math library

C99 (150) - ISO/TEC 9899:1999 C
standard math library

C++03 (Is0) - ISO/IEC 14882:2003 C++
standard math library

“Support non-inlined S-functions” on page
10-23

Specify whether to generate code for non-
inlined S-functions.

“Maximum word length” on page 10-28

Specify a maximum word length, in bits,
for which the code generation process
generates system-defined multiword type
definitions.

Model Configuration Parameters: Code Generation Interface

Parameter

Description

“Multiword type definitions” on page 10-
25

Specify whether to use system-defined or
user-defined type definitions for multiword
data types in generated code.

“Classic call interface” on page 10-30

Specify whether to generate model function
calls compatible with the main program
module of the GRT target in models created
before R2012a.

“Use dynamic memory allocation for model
initialization” on page 10-32

Control how the generated code allocates
memory for model data.

“Single output/update function” on page 10-
36

Specify whether to generate the
model step function.

“Terminate function required” on page 10-
39

Specify whether to generate the
model terminate function.

“Combine signal/state structures” on page
10-41

Specify whether to combine global block
signals and global state data into one data
structure in the generated code

“MAT-file logging” on page 10-50

Specify MAT-file logging.

“MAT-file variable name modifier” on page
10-53

Select the text to add to MAT-file variable
names.

“Existing shared code” (Embedded Coder)

Specify folder that contains existing shared
code

“Remove disable function” (Embedded

Coder)

Remove unreachable (dead-code) instances
of the disable functions from the
generated code for ERT-based systems that
include model referencing hierarchies.

“Remove reset function” (Embedded Coder)

Remove unreachable (dead-code) instances
of the reset functions from the generated
code for ERT-based systems that include
model referencing hierarchies.

“LUT object struct order for even spacing
specification” on page 9-68

Change the order of the fields in the
generated structure for a lookup table
object whose specification parameter is set
to even spacing.

9-5

9 Code Generation Parameters: Interface

Parameter

Description

“LUT object struct order for explicit value
specification” on page 9-69

Change the order of the fields in the
generated structure for a lookup table
object whose specification parameter is set
to explicit value.

“Generate destructor” on page 10-48

Specify whether to generate a destructor
for the C++ model class.

“Internal data access” on page 10-46

Specify whether to generate access
methods for internal data structures, such
as Block I/0, DWork vectors, Run-time
model, Zero-crossings, and continuous
states, for the C++ model class.

“Internal data visibility” on page 10-44

Specify whether to generate internal data
structures such as Block I/0, DWork
vectors, Run-time model, Zero-crossings,
and continuous states as public,
private, or protected data members of
the C++ model class.

“Use dynamic memory allocation for model
block instantiation” on page 10-34

Specify whether generated code uses the
operator new, during model object
registration, to instantiate objects for
referenced models configured with a C++
class interface.

“Code replacement library” on page 9-11

Create custom Code Replacement libraries
using code replacement tool.

“Ignore custom storage classes” on page 10-
2

Specify whether to apply or ignore custom
storage classes.

“Ignore test point signals” on page 10-4

Specify allocation of memory buffers for
test points.

The following parameters under the Advanced parameters are infrequently used and

have no other documentation.

Model Configuration Parameters: Code Generation Interface

Parameter Description

GenerateSharedConstants Control whether the code generator
generates code with shared constants and
shared functions. Default is on. of f turns
off shared constants, shared functions, and
subsystem reuse across models.

InferredTypesCompatibility For compatibility with legacy code
including tmwtypes.h, specify that the
code generator creates a preprocessor
directive #define TMWTYPES inside

rtwtypes.h
TargetLibSuffix Control the suffix used for naming a
character vector-'' target's dependent libraries (for example,

_target.libor target.a). If specified,
the character vector must include a period
(.). (For generated model reference
libraries, the library suffix defaults to
_rtwlib.lib on Windows systems and
_rtwlib.a on UNIX systems.).

Note This parameter does not apply for
model builds that use the toolchain
approach, see “Library Control

Parameters”
TargetPreCompLiblLocation Control the location of precompiled
character vector- "' libraries. If you do not set this parameter,

the code generator uses the location
specified in rtwmakecfg.m.

IsERTTarget Indicates whether or not the currently
selected target is derived from the ERT
target.

CPPClassGenCompliant Indicates whether the target supports the

ability to generate and configure C++ class
interfaces to model code.

ConcurrentExecutionCompliant Indicates whether the target supports
concurrent execution

9 Code Generation Parameters: Interface

Parameter

Description

UseToolchainInfoCompliant

Indicate a custom target is toolchain-
compliant.

ModelStepFunctionPrototypeControl
Compliant

Indicates whether the target supports the
ability to control the function prototypes of
initialize and step functions that are
generated for a Simulink model.

ParMdlRefBuildCompliant

Indicates if the model is configured for
parallel builds when building a model that
includes referenced models.

CompOptLevelCompliant
off, on

Set in SelectCallback for a target to
indicate whether the target supports the
ability to use the Compiler optimization
level parameter to control the compiler
optimization level for building generated
code.

Default is of £ for custom targets and on
for targets provided with the Simulink
Coder and Embedded Coder products.

ModelReferenceCompliant
character vector - of f, on

Set in SelectCallback for a target to
indicate whether the target supports model
reference.

GenerateFullHeader

Generate full header including time stamp.

For ERT targets, this parameter is on the
Code Generation > Templates pane.

The following parameters are for MathWorks use only.

Parameter Description

ExtModeTesting For MathWorks use only.
ExtModeIntrflevel For MathWorks use only.
ExtModeMexFile For MathWorks use only.

See Also

See Also

More About
“Model Configuration”

9-9

9 Code Generation Parameters: Interface

Code Generation: Interface Tab Overview

Select the target software environment, output variable name modifier, and data
exchange interface.

See Also
Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

“Run-Time Environment Configuration”

9-10

Code replacement library

Code replacement library

Description

Specify a code replacement library the code generator uses when producing code for a
model.

Category: Code Generation > Interface

Settings

Default: None

None
Does not use a code replacement library.
GNU C99 extensions

Generates calls to the GNU® gce math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

AUTOSAR 4.0

Produces code that more closely aligns with the AUTOSAR standard. Requires an
Embedded Coder license.

Intel IPP for x86-64 (Windows)

Generates calls to the Intel® Performance Primitives (IPP) library for the x86-64
Windows platform.

Intel IPP/SSE for x86-64 (Windows)

Generates calls to the IPP and Streaming SIMD Extensions (SSE) libraries for the
x86-64 Windows platform.

Intel IPP for x86-64 (Windows using MinGW compiler)

Generates calls to the IPP library for the x86-64 Windows platform and MinGW
compiler.

Intel IPP/SSE for x86-64 (Windows using MinGW compiler)
Generates calls to the IPP and SSE libraries for the x86/Pentium Windows platform.

9-11

9 Code Generation Parameters: Interface

9-12

Intel IPP for x86/Pentium (Windows)

Intel IPP for x86/Pentium (Windows)—Generates calls to the IPP library for the x86/
Pentium Windows platform.

Intel IPP/SSE for x86/Pentium (Windows)

Intel IPP for x86/Pentium (Windows)—Generates calls to the IPP and SSE libraries
for the x86/Pentium Windows platform.

Intel IPP for x86-64 (Linux)

Generates calls to the IPP library for the x86-64 Linux® platform.
Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)

Generates calls to the GNU libraries for IPP and SSE, with GNU C99 extensions, for
the x86-64 Linux platform.

+ Additional values might be listed for licensed target products and for embedded and
desktop targets. If you have created and registered code replacement libraries using
the Embedded Coder product, additional values are listed.

+ The software filters the list of Code replacement library values based on
compatibility with Language, Standard math library, and Device vendor values
you select for your model.

Tips

+ If you specify Shared location for the Code Generation > Interface > Shared
code placement parameter or you generate code for models in a model reference
hierarchy,

Models that are sharing the location or are in the model hierarchy must specify
the same code replacement library (same name, tables, and table entries).

If you change the name or contents of the code replacement library and rebuild the
model from the same folder as the previous build, the code generator reports a
checksum warning (see “Manage the Shared Utility Code Checksum”). The
warning prompts you to remove the existing folder and stop or stop code
generation.

+ If both of the following conditions exist for a model that contains Stateflow charts, the
Simulink software regenerates code for the charts and recompiles the generated code.

* You do not specify Shared location for the Code Generation > Interface >
Shared code placement parameter.

See Also

You change the code replacement library name or contents before regenerating
code.

Tip

Before setting this parameter, verify that your compiler supports the library that you
want to use. If you select a parameter value that your compiler does not support,
compiler errors can occur.

Command-Line Information

Parameter: CodeReplacementLibrary

Type: character vector

Value: 'None' | 'GNU C99 extensions' | '"Intel IPP for x86-64 (Windows)'
| "Intel IPP/SSE for x86-64 (Windows)' | 'Intel IPP for x86-64
(Windows for MinGW compiler)' |'Intel IPP/SSE for x86-64 (Windows for
MinGW compiler)' | '"Intel IPP for x86/Pentium (Windows)' | "Intel
IPP/SSE x86/Pentium (Windows)' | '"Intel IPP for x86-64 (Linux)'

'Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)'

Default: 'None'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Valid library
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
. “Run-Time Environment Configuration”

. “What Is Code Replacement Customization?” (Embedded Coder)

9-13

9 Code Generation Parameters: Interface

. “Develop a Code Replacement Library” (Embedded Coder)

9-14

Shared code placement

Shared code placement

Description

Specify the location for generating utility functions, exported data type definitions, and
declarations of exported data with custom storage class.

Category: Code Generation > Interface

Settings
Default: auto

Auto

The code generator places utility code within the codeGenFolder/slprij/target/
_sharedutils (or codeGenFolder/targetSpecific/ shared) folder for a model
that contains Existing Shared Code (Embedded Coder) or at least one of the following
blocks:

* Model blocks

* Simulink Function blocks

* Function Caller blocks

+ Calls to Simulink Functions from Stateflow or MATLAB Function blocks

+ Stateflow graphical functions when the Export Chart Level Functions
parameter is selected

If a model does not contain one of the above blocks or Existing Shared Code
(Embedded Coder), the code generator places utility code in the build folder
(generally, the folder that contains model. c or model.cpp).

Shared location

Directs code for utilities to be placed within the codeGenFolder/slprij/target/
_sharedutils (or codeGenFolder/targetSpecific/ shared) folder.

Command-Line Information
Parameter: UtilityFuncGeneration
Type: character vector

9-15

9 Code Generation Parameters: Interface

Value: '2uto' | 'Shared location'
Default: 'Auto’

Recommended Settings

Application Setting

Debugging Shared location (GRT)
No impact (ERT)

Traceability Shared location (GRT)
No impact (ERT)

Efficiency No impact (execution, RAM)
Shared location (ROM)

Safety precaution No impact

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Run-Time Environment Configuration”

“Manage Build Process Folders”

“Sharing Utility Code”

9-16

Support: floating-point numbers

Support: floating-point numbers

Description

Specify whether to generate floating-point data and operations.

Category: Code Generation > Interface

Settings
Default: On (GUI), 'off' (command-line)

¥ On
Generates floating-point data and operations.

I off

Generates pure integer code. If you clear this option, an error occurs if the code
generator encounters floating-point data or expressions. The error message reports
offending blocks and parameters.

Dependencies

* This option only appears for ERT-based targets.
* This option requires an Embedded Coder license when generating code.

+ Selecting this option enables Support: non-finite numbers and clearing this option
disables Support: non-finite numbers.

* This option must be the same for top-level and referenced models.

* When you select the configuration parameter MAT-File Logging, you must also
select Support: non-finite numbers and Support: floating-point numbers.

Command-Line Information
Parameter: PurelyIntegerCode
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

9-17

9 Code Generation Parameters: Interface

9-18

Note The command-line values are reverse of the settings values. The value 'on' in the
command line corresponds to the description of “Off” in the settings section. The value
'off' in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off (GUI), 'on' (command-line) — for integer only
Safety precaution No impact

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

Support: non-finite numbers

Support: non-finite numbers

Description

Specify whether to generate non-finite data and operations on non-finite data.

Category: Code Generation > Interface

Settings

Default: on

|7On

Generates non-finite data (for example, NaN and Inf) and related operations.

I off

Does not generate non-finite data and operations. If you clear this option, an error
occurs if the code generator encounters non-finite data or expressions. The error
message reports offending blocks and parameters.

Note Code generation is optimized with the assumption that non-finite data are
absent. However, if your application produces non-finite numbers through signal
data or MATLAB code, the behavior of the generated code might be inconsistent with
simulation results when processing non-finite data.

Dependencies

For ERT-based targets, parameter Support: floating-point numbers enables
Support: non-finite numbers.

If of £ for top model, can be on or off for referenced models.

If on for top model, must be on for referenced models.

When you select the configuration parameter MAT-File Logging, you must also
select Support: non-finite numbers and, if you use an ERT-based system target
file, Support: floating-point numbers.

9-19

9 Code Generation Parameters: Interface

9-20

Command-Line Information
Parameter: SupportNonFinite
Type: character vector

Value: 'on' | 'off’

Default: 'on'

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting

No impact

No impact

Off (execution, ROM), No impact (RAM)

No recommendation

“Model Configuration Parameters: Code Generation Interface” on page 9-2

Support: complex numbers

Support: complex numbers

Description
Specify whether to generate complex data and operations.

Category: Code Generation > Interface

Settings
Default: on

¥ On
Generates complex numbers and related operations.

I off

Does not generate complex data and related operations. If you clear this option, an
error occurs if the code generator encounters complex data or expressions. The error
message reports offending blocks and parameters.

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

+ If of £ for top model, can be on or off for referenced models.

If on for top model, must be on for referenced models.

Command-Line Information
Parameter: SupportComplex
Type: character vector

Value: 'on' | 'off"

Default: 'off"

9-21

9 Code Generation Parameters: Interface

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Off (for real only)
Safety precaution No impact

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

9-22

Support: absolute time

Support: absolute time

Description

Specify whether to generate and maintain integer counters for absolute and elapsed time
values.

Category: Code Generation > Interface

Settings
Default: on

|7On

Generates and maintains integer counters for blocks that require absolute or elapsed
time values. Absolute time is the time from the start of program execution to the
present time. An example of elapsed time is time elapsed between two trigger events.

If you select this option and the model does not include blocks that use time values,
the target does not generate the counters.
ot

Does not generate integer counters to represent absolute or elapsed time values. If
you do not select this option and the model includes blocks that require absolute or
elapsed time values, an error occurs during code generation.

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

* Select this parameter if your model includes blocks that require absolute or elapsed
time values.

Command-Line Information
Parameter: SupportAbsoluteTime
Type: character vector

9-23

9 Code Generation Parameters: Interface

Value: 'on' | 'off"
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Timers in Asynchronous Tasks”

9-24

Support: continuous time

Support: continuous time

Description
Specify whether to generate code for blocks that use continuous time.

Category: Code Generation > Interface

Settings
Default: off

v On
Generates code for blocks that use continuous time.

™ off

Does not generate code for blocks that use continuous time. If you do not select this
option and the model includes blocks that use continuous time, an error occurs
during code generation.

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license to generate code.

* This parameter must be on for models that include blocks that require absolute or
elapsed time values.

* This parameter is cleared if you select Remove error status field in real-time
model data structure.

+ If both the following conditions exist, output values read from ert main for a

continuous output port can differ from the corresponding output values in logged data
for a model:

* You customize ert main.c or .cpp to read model outputs after each base-rate
model step.

* You select parameters Support: continuous time and Single output/update
function.

9-25

9 Code Generation Parameters: Interface

The difference occurs because, while logged data captures output at major time steps,
output read from ert main after the base-rate model step can capture output at
intervening minor time steps. The following table lists workarounds that eliminate
the discrepancy.

Work Around Customized Customized
ert_main.c ert_main.cpp
Separate the generated output and update X

functions (clear the Single output/update
function parameter), and insert code in

ert main to read model output values reflecting
only the major time steps. For example, in

ert main, between the model output call and
the model update call, read the model External
outputs global data structure (defined in
model.h).

Select the Single output/update function X X
parameter. Insert code in the generated model.c
or .cpp file that returns model output values
reflecting only major time steps. For example, in
the model step function, between the output code
and the update code, save the value of the model
External outputs global data structure
(defined in model.h). Then, restore the value
after the update code completes.

Place a Zero-Order Hold block before the X X
continuous output port.

Command-Line Information
Parameter: SupportContinuousTime
Type: character vector

Value: 'on' | 'off"

Default: 'of £’

Recommended Settings

Application Setting
Debugging No impact

9-26

See Also

Application Setting

Traceability No impact

Efficiency Off (execution, ROM), No impact (RAM)
Safety precaution No recommendation

See Also

Related Examples
“Model Configuration Parameters: Code Generation Interface” on page 9-2

“Use Discrete and Continuous Time” (Embedded Coder)

9-27

9 Code Generation Parameters: Interface

Support: variable-size signals

9-28

Description

Specify whether to generate code for models that use variable-size signals.

Category: Code Generation > Interface

Settings
Default: Off

Y1 On

Generates code for models that use variable-size signals.

Off

Does not generate code for models that use variable-size signals. If this parameter is
off and the model uses variable-size signals, an error occurs during code generation.

Dependencies

* This parameter only appears for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: SupportvVariableSizeSignals
Type: character vector

Value: 'on' | 'off"

Default: "off"'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

See Also

Application Setting

Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

9-29

9 Code Generation Parameters: Interface

Code interface packaging

9-30

Description
Select the packaging for the generated C or C++ code interface.

Category: Code Generation > Interface

Settings

Default: Nonreusable function if Language is set to C; C++ class if Language is
set to C++

C++ class
Generate a C++ class interface to model code. The generated interface encapsulates
required model data into C++ class attributes and model entry point functions into C
++ class methods.

Nonreusable function

Generate nonreusable code. Model data structures are statically allocated and
accessed by model entry point functions directly in the model code.

Reusable function

Generate reusable, multi-instance code that is reentrant, as follows:

* For a GRT-based model, the generated model . c source file contains an allocation
function that dynamically allocates model data for each instance of the model. For
an ERT-based model, you can use the Use dynamic memory allocation for
model initialization option to control whether an allocation function is
generated.

* The generated code passes the real-time model data structure in, by reference, as
an argument to model step and the other model entry point functions.

* The real-time model data structure is exported with the model.h header file.

For an ERT-based model, you can use the Pass root-level I/O as parameter to
control how root-level input and output arguments are passed to the reusable model
entry-point functions. They can be included in the real-time model data structure
that is passed to the functions, passed as individual arguments, or passed as
references to an input structure and an output structure.

Code interface packaging

Tips

Entry points are exported with model.h. To call the entry-point functions from
handwritten code, add an #include model.h directive to the code.

When you select Reusable function, the code generator generates a pointer to the
real-time model object (model M).

When you select Reusable function, the code generator can generate code that
compiles but is not reentrant. For example, if a signal, DWork structure, or parameter
data has a storage class other than Auto, global data structures are generated.

Dependencies

The value C++ class is available only if the Language parameter is set to C++ on
the Code Generation pane.

Selecting Reusable function or C++ class enables Multi-instance code error
diagnostic.

For an ERT target, selecting Reusable function enables Pass root-level I/O as
and Use dynamic memory allocation for model initialization.

For an ERT target, selecting C++ class enables the following controls for
customizing the model class interface:

Configure C++ Class Interface button
+ Data Member Visibility/Access Control subpane

Model options Generate destructor and Use dynamic memory allocation for
model block instantiation

For an ERT target, you can use Reusable function with the static ert main.c

module, if you do the following:

+ Select the value Part of model data structure for Pass root-level I/O as.
Select the option Use dynamic memory allocation for model initialization.

For an ERT target, you cannot use Reusable function if you are using:

The model step function prototype control capability
* The subsystem parameter Function with separate data
A subsystem that

9-31

9 Code Generation Parameters: Interface

9-32

+ Has multiple ports that share source

* Has a port that is used by multiple instances of the subsystem and has
different sample times, data types, complexity, frame status, or dimensions
across the instances

* Has output marked as a global signal

* For each instance contains identical blocks with different names or parameter
settings

+ Using Reusable function does not change the code generated for function-call
subsystems.

Command-Line Information

Parameter: CodeInterfacePackaging

Type: character vector

Value: 'C++ class' | 'Nonreusable function' | 'Reusable function'
Default: 'Nonreusable function' if TargetLangissetto 'C'; 'C++ class' if
TargetLangis set to 'C++'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Reusable function or C++ class
Safety precaution No impact

See Also

model step

Related Examples

. “Model Configuration Parameters: Code Generation Interface” on page 9-2

. “Entry-Point Functions and Scheduling”

. “Generate Reentrant Code from Top Models”

. “Combine Code Generated for Multiple Models or Multiple Instances of a Model”

See Also

“Generate Reentrant Code from Top-Level Models” (Embedded Coder)
“Generate C++ Class Interface to Model or Subsystem Code”

“Control Generation of C++ Class Interfaces” (Embedded Coder)
“Code Generation of Subsystems”

“Generate Reentrant Code from Subsystems”

“Generate Reentrant Code from Subsystems”

“S-Functions That Support Code Reuse”

“Static Main Program Module” (Embedded Coder)

“Control Generation of Function Prototypes” (Embedded Coder)
“Generate Modular Function Code” (Embedded Coder)

“Generate Component Source Code for Export to External Code Base” (Embedded
Coder)

9-33

9 Code Generation Parameters: Interface

Multi-instance code error diagnostic

Description

Select the severity level for diagnostics displayed when a model violates requirements for
generating multi-instance code.

Category: Code Generation > Interface

Settings
Default: Error

None

Proceed with build without displaying a diagnostic message.
Warning

Proceed with build after displaying a warning message.
Error

Abort build after displaying an error message.
Under certain conditions, the software can:

+ Generate code that compiles but is not reentrant. For example, if a signal or DWork
structure has a storage class other than Auto, global data structures are generated.

+ Be unable to generate valid and compilable code. For example, if the model contains
an S-function that is not code-reuse compliant or a subsystem triggered by a wide
function-call trigger, the code generator produces invalid code, displays an error
message, and terminates the build.

Dependencies

This parameter is enabled by setting Code interface packaging to Reusable
function or C++ class.

Command-Line Information
Parameter: MultiInstanceErrorCode

9-34

See Also

Type: character vector
Value: 'None' | '"Warning' | 'Error’
Default: 'Exrror’

Recommended Settings

Application Setting

Debugging Warning or Error
Traceability No impact
Efficiency None

Safety precaution No impact

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Entry-Point Functions and Scheduling”

“Generate Reentrant Code from Top Models”

“Generate C++ Class Interface to Model or Subsystem Code”

“Code Generation of Subsystems”

“Generate Reentrant Code from Subsystems”

“Generate Reentrant Code from Subsystems”

“Generate Modular Function Code” (Embedded Coder)

9-35

9 Code Generation Parameters: Interface

Pass root-level I/O as

9-36

Description

Control how root-level model input and output are passed to the reusable model step
function.

Category: Code Generation > Interface

Settings

Default: Individual arguments

Individual arguments

Passes each root-level model input and output value to model step as a separate
argument.

Structure reference

Packs root-level model input into a struct and passes struct to model step as an
argument. Similarly, packs root-level model output into a second struct and passes
it to model step.

Part of model data structure

Packages root-level model input and output into the real-time model data structure.

Dependencies

* This parameter only appears for ERT-based targets with Code interface packaging
set to Reusable function.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: RootIOFormat

Type: character vector

Value: 'Individual arguments' | 'Structure reference' | 'Part of model
data structure'

Default: 'Individual arguments'

See Also

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

model step

Related Examples
“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Entry-Point Functions and Scheduling”
“Generate Reentrant Code from Top-Level Models” (Embedded Coder)
“Code Generation of Subsystems”
“Generate Modular Function Code” (Embedded Coder)

9-37

9 Code Generation Parameters: Interface

Remove error status field in real-time model data structure

Description

Specify whether to log or monitor error status.

Category: Code Generation > Interface

Settings
Default: off

|7On

Omits the error status field from the generated real-time model data structure
rtModel. This option reduces memory usage.

Be aware that selecting this option can cause the code generator to omit the rtModel
data structure from generated code.
I off

Includes an error status field in the generated real-time model data structure
rtModel. You can use available macros to monitor the field for error message data or
set it with error message data.

Dependencies

* This parameter appears only for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.
+ Selecting this parameter clears Support: continuous time.

+ If your application contains multiple integrated models, the setting of this option
must be the same for all of the models to avoid unexpected application behavior. For
example, if you select the option for one model but not another, an error status might
not get registered by the integrated application.

Command-Line Information

Parameter: SuppressErrorStatus

9-38

See Also

Type: character vector
Value: 'on' | 'off’
Default: 'of '

Recommended Settings

Application Setting

Debugging Off

Traceability No impact
Efficiency On

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Use the Real-Time Model Data Structure”

9-39

9 Code Generation Parameters: Interface

Configure Model Functions

9-40

Description

Open the Model Interface dialog box. In this dialog box, you can specify whether the code
generator uses default model initialize and model step function prototypes or

model-specific C prototypes. Based on your selection, you can preview and modify the
function prototypes.

Category: Code Generation > Interface

Dependencies

* This button appears only for ERT-based targets with Code interface packaging set
to a value other than C++ class.

* This button requires an Embedded Coder license when generating code.

* This button is active only if your model uses an attached configuration set. If your
model uses a referenced configuration set, the button is greyed out. If you want to
configure a model-specific step function prototype for a referenced configuration set,
use the MATLAB function prototype control functions described in “Configure
Function Prototypes Programmatically” (Embedded Coder).

See Also

model initialize | model step

Related Examples

. “Model Configuration Parameters: Code Generation Interface” on page 9-2
. “Control Generation of Function Prototypes” (Embedded Coder)

. “Launch the Model Interface Dialog Boxes” (Embedded Coder)

Parameter visibility

Parameter visibility

Description

Specify whether to generate the block parameter structure as a public, private, or
protected data member of the C++ model class.

Category: Code Generation > Interface

Settings

Default: private

public

Generates the block parameter structure as a public data member of the C++ model
class.

private

Generates the block parameter structure as a private data member of the C++
model class.

protected

Generates the block parameter structure as a protected data member of the C++
model class.

Dependencies

* This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: ParameterMemberVisibility
Type: character vector

Value: 'public' | 'private' | 'protected’
Default: 'private’

9-41

9 Code Generation Parameters: Interface

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Configure Code Interface Options” (Embedded Coder)

9-42

Parameter access

Parameter access

Description

Specify whether to generate access methods for block parameters for the C++ model
class.

Category: Code Generation > Interface

Settings
Default: None

None

Does not generate access methods for block parameters for the C++ model class.
Method

Generates noninlined access methods for block parameters for the C++ model class.
Inlined method

Generates inlined access methods for block parameters for the C++ model class.

Dependencies

+ This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: GenerateParameterAccessMethods
Type: character vector

Value: 'None' | "Method' | 'Inlined method'
Default: 'None'

9-43

9 Code Generation Parameters: Interface

Recommended Settings

Application Setting
Debugging Inlined method
Traceability Inlined method

Efficiency Inlined method

Safety precaution No recommendation

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Configure Code Interface Options” (Embedded Coder)

9-44

External 1/0 access

External I/O access

Description

Specify whether to generate access methods for root-level I/0 signals for the C++ model
class.

Note This parameter affects generated code only if you are using the default (void-void
style) step method for your model class. The parameter has no affect if you are explicitly
passing arguments for root-level I/0 signals using an I/O arguments style step method.

For more information, see “Passing Default Arguments” (Embedded Coder) and “Passing
I/0 Arguments” (Embedded Coder).

Category: Code Generation > Interface

Settings
Default: None

None
Does not generate access methods for root-level I/0 signals for the C++ model class.
Method

Generates noninlined access methods for root-level I/O signals for the C++ model
class. The software generates set and get methods for each signal.

Inlined method
Generates inlined access methods for root-level I/0 signals for the C++ model class.
The software generates set and get methods for each signal.

Structure-based method

Generates noninlined, structure-based access methods for root-level I/O signals for
the C++ model class. The software generates one set method, taking the address of
the external input structure as an argument, and for external outputs (if applicable),
one get method, returning the reference to the external output structure.

Inlined structure-based method

Generates inlined, structure-based access methods for root-level I/O signals for the C
++ model class. The software generates one set method, taking the address of the

9-45

9 Code Generation Parameters: Interface

9-46

external input structure as an argument, and for external outputs (if applicable), one
get method, returning the reference to the external output structure.

Dependencies

* This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: GenerateExternal IOAccessMethods

Type: character vector

Value: 'None' | "Method' | 'Inlined method' | 'Structure-based method' |
'Inlined structure-based method'

Default: 'None'

Recommended Settings

Application Setting

Debugging Inlined method
Traceability Inlined method
Efficiency Inlined method
Safety precaution No recommendation
See Also

Related Examples

. “Model Configuration Parameters: Code Generation Interface” on page 9-2
. “Configure Code Interface Options” (Embedded Coder)

Configure C++ Class Interface

Configure C++ Class Interface

Description

Open the Configure C++ class interface dialog box. In this dialog box, you can customize
the C++ class interface for your model code. Based on your selections, you can preview
and modify the model-specific C++ class interface.

Category: Code Generation > Interface

Dependencies

* This button appears only for ERT-based targets with Language set to C++ and Code
interface packaging set to C++ class.

* This button requires an Embedded Coder license when generating code.

* This button is active only if your model uses an attached configuration set. If your
model uses a referenced configuration set, the button is greyed out. If you want to
configure a model-specific C++ class interface for a referenced configuration set, use
the MATLAB C++ class interface control functions described in “Customize C++ Class
Interfaces Programmatically” (Embedded Coder).

See Also

model step

Related Examples

. “Model Configuration Parameters: Code Generation Interface” on page 9-2
. “Control Generation of C++ Class Interfaces” (Embedded Coder)
. “Configure Step Method for Your Model Class” (Embedded Coder)

9-47

9 Code Generation Parameters: Interface

Generate C API for: signals

Description

Generate C API data interface code with a signals structure.

Category: Code Generation > Interface

Settings
Default: off

¥ On
Generates C API interface to global block outputs.

I off
Does not generate C API signals.

Command-Line Information
Parameter: RTWCAPISignals
Type: character vector

Value: 'on' | "off"

Default: 'off’

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact during development

Off for production code generation

9-48

See Also

See Also
Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Exchange Data Between Generated and External Code Using C API”

9-49

9 Code Generation Parameters: Interface

Generate C API for: parameters

Description

Generate C API data interface code with parameter tuning structures.

Category: Code Generation > Interface

Settings
Default: off

¥ On
Generates C API interface to global block parameters.

I off

Does not generate C API parameters.

Command-Line Information
Parameter: RTWCAPIParams
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact during development

Off for production code generation

9-50

See Also

See Also
Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Exchange Data Between Generated and External Code Using C API”

9-51

9 Code Generation Parameters: Interface

Generate C AP for: states

Description

Generate C API data interface code with a states structure.

Category: Code Generation > Interface

Settings
Default: off

v On
Generates C API interface to discrete and continuous states.

I off
Does not generate C API states.

Command-Line Information
Parameter: RTWCAPIStates
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact during development

Off for production code generation

9-52

See Also

See Also
Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Exchange Data Between Generated and External Code Using C API”

9-53

9 Code Generation Parameters: Interface

Generate C API for: root-level 1/0

Description

Generate C API data interface code with a root-level I/0 structure.

Category: Code Generation > Interface

Settings
Default: off

¥ On
Generates a C API interface to root-level inputs and outputs.

I off

Does not generate a C API interface to root-level inputs and outputs.

Command-Line Information
Parameter: RTWCAPIRootIO
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact during development

Off for production code generation

9-54

See Also

See Also
Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Exchange Data Between Generated and External Code Using C API”

9-55

9 Code Generation Parameters: Interface

ASAP?2 interface

Description
Generate code for the ASAP2 data interface.

Category: Code Generation > Interface

Settings
Default: off

v On
Generates code for the ASAP2 data interface.

I off
Does not generate code for the ASAP2 data interface.

Command-Line Information
Parameter: GenerateASAP2
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact during development

Off for production code generation

9-56

See Also

See Also
Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Export ASAP2 File for Data Measurement and Calibration”

9-57

9 Code Generation Parameters: Interface

External mode

Description

Generate code for the external mode data interface.

Category: Code Generation > Interface

Settings
Default: off

v On
Generates code for the external mode data interface.

I off

Does not generate code for the external mode data interface.

Command-Line Information
Parameter: ExtMode

Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact during development

Off for production code generation

9-58

See Also

See Also
Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

“Set Up and Use Host/Target Communication Channel”

9-59

9 Code Generation Parameters: Interface

Transport layer

9-60

Description
Specify the transport protocol for communications.

Category: Code Generation > Interface

Settings
Default: tcpip

tcpip
Applies a TCP/IP transport mechanism. The MEX-file name is ext comm.
serial

Applies a serial transport mechanism. The MEX-file name is
ext serial win32 comm.

Tip

The MEX-file name displayed next to Transport layer cannot be edited in the
Configuration Parameters dialog box. The value is specified either in matlabroot/
toolbox/simulink/simulink/extmode transports.m, for targets provided by
MathWorks®, or in an s1 customization.m file, for custom targets and/or custom
transports.

Dependency

Selecting External mode enables this parameter.

Command-Line Information
Parameter: ExtModeTransport
Type: integer

Value: 0 for TCP/IP | 1 for serial
Default: 0

See Also

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

“Target Interfacing”

“Create a Transport Layer for External Communication”

No impact
No impact
No impact
No impact

No impact

9-61

9 Code Generation Parameters: Interface

MEX-file arguments

9-62

Description

Specify arguments to pass to an external mode interface MEX-file for communicating
with executing targets.

Category: Code Generation > Interface

Settings
Default: '

For TCP/IP interfaces, ext comm allows three optional arguments:

* Network name of your target (for example, 'myPuter' or '148.27.151.12")
+ Verbosity level (0 for no information or 1 for detailed information)

+ TCP/IP server port number (an integer value between 256 and 65535, with a default
of 17725)

For a serial transport, ext serial win32 comm allows three optional arguments:

+ Verbosity level (0 for no information or 1 for detailed information)
+ Serial port ID (1 for coM1, and so on)

+ Baud (selected from the set 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600,
115200, with a default baud of 57600)

Dependency

Selecting External mode enables this parameter.

Command-Line Information
Parameter: ExtModeMexArgs
Type: character vector

Value: valid arguments
Default: '

See Also

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

“Target Interfacing”

“Choose Communication Protocol for Client and Server”

Setting

No impact
No impact
No impact

No impact

9-63

9 Code Generation Parameters: Interface

Static memory allocation

9-64

Description

Control memory buffer for external mode communication.

Category: Code Generation > Interface

Settings
Default: off

|7On

Enables the Static memory buffer size parameter for allocating dynamic memory.

™ off

Uses a static memory buffer for External mode instead of allocating dynamic memory
(calls to malloc).

Tip

To determine how much memory to allocate, select verbose mode on the target. That
selection displays the amount of memory the target tries to allocate and the amount of
memory available.

Dependencies

Selecting External mode enables this parameter.

This parameter enables Static memory buffer size.

Command-Line Information
Parameter: ExtModeStaticAlloc
Type: character vector

Value: 'on' | 'off"

Default: 'of £

See Also

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

“Configure External Mode Options for Code Generation”

Setting

No impact
No impact
No impact

No impact

9-65

9 Code Generation Parameters: Interface

Static memory buffer size

9-66

Description
Specify the memory buffer size for external mode communication.

Category: Code Generation > Interface

Settings
Default: 1000000

Enter the number of bytes to preallocate for external mode communications buffers in
the target.

Tips
+ If you enter too small a value for your application, external mode issues an out-of-
memory error.

* To determine how much memory to allocate, select verbose mode on the target. That
selection displays the amount of memory the target tries to allocate and the amount of
memory available.

Dependency

Selecting Static memory allocation enables this parameter.

Command-Line Information
Parameter: ExtModeStaticAllocSize
Type: integer

Value: valid value

Default: 1000000

See Also

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

“Configure External Mode Options for Code Generation”

Setting

No impact
No impact
No impact

No impact

9-67

9 Code Generation Parameters: Interface

LUT object struct order for even spacing specification

9-68

Description

Change the order of the fields in the generated structure for a lookup table object whose
specification parameter is set to even spacing.

Category: Code Generation > Interface > Advanced Parameters

Settings
Default: Size, Breakpoints, Table

Size,Breakpoints, Table
Display structure in the order size, breakpoints, table.
Size,Table,Breakpoints

Display structure in the order size, table, breakpoints.

Command-Line Information

Parameter: LUTObjectStructOrderEvenSpacing

Type: character vector

Value: 'Size, Breakpoints, Table' | 'Size, Table,Breakpoints'
Default: 'Size, Breakpoints, Table'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

LUT object struct order for explicit value specification

LUT object struct order for explicit value specification

Description

Change the order of the fields in the generated structure for a lookup table object whose
specification parameter is set to explicit value.

Category: Code Generation > Interface> Advanced Parameters

Settings
Default: Size, Breakpoints, Table

Size,Breakpoints, Table
Display structure in the order size, breakpoints, table.
Size,Table,Breakpoints

Display structure in the order size, table, breakpoints.

Command-Line Information

Parameter: LUTObjectStructOrderExplicitValues

Type: character vector

Value: 'Size, Breakpoints, Table' | 'Size, Table,Breakpoints'
Default: 'Size, Breakpoints, Table'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

9-69

Simulink Coder Parameters: Advanced
Parameters

1 0 Simulink Coder Parameters: Advanced Parameters

Ignore custom storage classes

10-2

Description

Specify whether to apply or ignore custom storage classes.

Category: Code Generation > Interface

Settings
Default: off

|7On

Ignores custom storage classes by treating data objects that have them as if their
storage class attribute is set to Auto. Data objects with an Auto storage class do not
interface with external code and are stored as local or shared variables or in a global
data structure.

I off

Applies custom storage classes as specified. You must clear this option if the model
defines data objects with custom storage classes.

Tips

¢+ Clear this parameter before configuring data objects with custom storage classes.
+ Setting for top-level and referenced models must match.

Dependencies

* This parameter only appears for ERT-based targets.
* Clear this parameter to enable module packaging features.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: TgnoreCustomStorageClasses

See Also

Type: character vector
Value: 'on' | 'off
Default: 'of '

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Custom Storage Classes” (Embedded Coder)

Setting

No impact
No impact
No impact

No impact

10-3

1 0 Simulink Coder Parameters: Advanced Parameters

Ignore test point signals

10-4

Description
Specify allocation of memory buffers for test points.

Category: Code Generation > Interface

Settings

Default: Off

41 On
Ignores test points during code generation, allowing optimal buffer allocation for

signals with test points, facilitating transition from prototyping to deployment and
avoiding accidental degradation of generated code due to workflow artifacts.

Off

Allocates separate memory buffers for test points, resulting in a loss of code
generation optimizations such as reducing memory usage by storing signals in
reusable buffers.

Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: IgnoreTestpoints
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

See Also

Recommended Settings

Application Setting
Debugging Off
Traceability No impact
Efficiency On

Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Signals with Test Points”
“Test Points” (Simulink)

“Signal Representation in Generated Code”

10-5

1 0 Simulink Coder Parameters: Advanced Parameters

Code-to-model

Description

Include hyperlinks in the code generation report that link code to the corresponding
Simulink blocks, Stateflow objects, and MATLAB functions in the model diagram.

Category: Code Generation > Report

Settings
Default: On

|7On

Includes hyperlinks in the code generation report that link code to corresponding
Simulink blocks, Stateflow objects, and MATLAB functions in the model diagram.
The hyperlinks provide traceability for validating generated code against the source
model.

ot

Omits hyperlinks from the generated report.

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.
+ This parameter is enabled and selected by Create code generation report.

* You must select Include comments on the Code Generation > Comments pane to
use this parameter.

Command-Line Information
Parameter: IncludeHyperlinkInReport
Type: character vector

Value: 'on' | 'off

Default: 'on"

10-6

See Also

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting
On

On

No impact

No recommendation

“Model Configuration Parameters: Code Generation Report” on page 5-2
“HTML Code Generation Report Extensions” (Embedded Coder)

10-7

1 0 Simulink Coder Parameters: Advanced Parameters

Model-to-code

Description

Link Simulink blocks, Stateflow objects, and MATLAB functions in a model diagram to

corresponding code segments in a generated HTML report so that the generated code for
a block can be highlighted on request.

Category: Code Generation > Report

Settings
Default: On

|7On

Includes model-to-code highlighting support in the code generation report. To
highlight the generated code for a Simulink block, Stateflow object, or MATLAB
script in the code generation report, right-click the item and select C/C++ Code >
Navigate to C/C++ Code.

I off
Omits model-to-code highlighting support from the generated report.

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.
This parameter is enabled when you select Create code generation report.

You must select the following parameters to use this parameter:

+ “Include comments” on page 6-5 on the Code Generation > Comments pane

+ At least one of the following:

+ “Eliminated / virtual blocks” on page 10-11
* “Traceable Simulink blocks” on page 10-13
+ “Traceable Stateflow objects” on page 10-15

10-8

See Also

“Traceable MATLAB functions” on page 10-17

Command-Line Information
Parameter: GenerateTraceInfo
Type: Boolean

Value: on | off

Default: on

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Report” on page 5-2
“HTML Code Generation Report Extensions” (Embedded Coder)

10-9

1 0 Simulink Coder Parameters: Advanced Parameters

Configure

10-10

Description

Open the Model-to-code navigation dialog box. This dialog box provides a way for you
to specify a build folder containing previously-generated model code to highlight.
Applying your build folder selection will attempt to load traceability information from the
earlier build, for which Model-to-code must have been selected.

Category: Code Generation > Report

Dependency

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

* This parameter is enabled by “Model-to-code” on page 10-8.

See Also

Related Examples

. “Model Configuration Parameters: Code Generation Report” on page 5-2
. “HTML Code Generation Report Extensions” (Embedded Coder)

Eliminated / virtual blocks

Eliminated / virtual blocks

Description

Include summary of eliminated and virtual blocks in code generation report.

Category: Code Generation > Report

Settings
Default: On

Y On
Includes a summary of eliminated and virtual blocks in the code generation report.

Off

Does not include a summary of eliminated and virtual blocks.

Dependencies

This parameter only appears for ERT-based targets.
This parameter requires an Embedded Coder license when generating code.

This parameter is enabled by Create code generation report.

Command-Line Information
Parameter: GenerateTraceReport
Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting
Debugging On
Traceability On

10-11

1 0 Simulink Coder Parameters: Advanced Parameters

10-12

Application Setting

Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

. “Model Configuration Parameters: Code Generation Report” on page 5-2
. “HTML Code Generation Report Extensions” (Embedded Coder)

Traceable Simulink blocks

Traceable Simulink blocks

Description

Include summary of Simulink blocks in code generation report.

Category: Code Generation > Report

Settings
Default: On

Y1 On

Includes a summary of Simulink blocks and the corresponding code location in the
code generation report.

Off

Does not include a summary of Simulink blocks.

Dependencies

This parameter only appears for ERT-based targets.
This parameter requires an Embedded Coder license when generating code.

This parameter is enabled by Create code generation report.

Command-Line Information
Parameter: GenerateTraceReportSl
Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting
Debugging On

10-13

1 0 Simulink Coder Parameters: Advanced Parameters

10-14

Application
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting
On
No impact

No recommendation

“Model Configuration Parameters: Code Generation Report” on page 5-2

. “HTML Code Generation Report Extensions” (Embedded Coder)

Traceable Stateflow objects

Traceable Stateflow objects

Description

Include summary of Stateflow objects in code generation report.

Category: Code Generation > Report

Settings
Default: On

Y1 On

Includes a summary of Stateflow objects and the corresponding code location in the
code generation report.

Off

Does not include a summary of Stateflow objects.

Dependencies

This parameter only appears for ERT-based targets.
This parameter requires an Embedded Coder license when generating code.

This parameter is enabled by Create code generation report.

Command-Line Information
Parameter: GenerateTraceReportSft
Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting
Debugging On

10-15

1 0 Simulink Coder Parameters: Advanced Parameters

10-16

Application
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting
On
No impact

No recommendation

“Model Configuration Parameters: Code Generation Report” on page 5-2
“HTML Code Generation Report Extensions” (Embedded Coder)
“Traceability of Stateflow Objects in Generated Code” (Stateflow)

Traceable MATLAB functions

Traceable MATLAB functions

Description

Include summary of MATLAB functions in code generation report.

Category: Code Generation > Report

Settings
Default: On

Y1 On

Includes a summary of MATLAB functions and corresponding code locations in the
code generation report.

Off

Does not include a summary of MATLAB functions.

Dependencies

This parameter only appears for ERT-based targets.
This parameter requires an Embedded Coder license when generating code.

This parameter is enabled by Create code generation report.

Command-Line Information
Parameter: GenerateTraceReportEml
Type: character vector

Value: 'on' | 'off"

Default: 'on’

Recommended Settings

Application Setting
Debugging On

10-17

1 0 Simulink Coder Parameters: Advanced Parameters

10-18

Application
Traceability
Efficiency

Safety precaution

See Also

Related Examples

Setting
On
No impact

No recommendation

“Model Configuration Parameters: Code Generation Report” on page 5-2
“HTML Code Generation Report Extensions” (Embedded Coder)

Summarize which blocks triggered code replacements

Summarize which blocks triggered code replacements

Description

Include code replacement report summarizing replacement functions used and their
associated blocks in the code generation report.

Category: Code Generation > Report

Settings
Default: Off

|701r1

Include code replacement report in the code generation report.

Note Selecting this option also generates code replacement trace information for
viewing in the Trace Information tab of the Code Replacement Viewer. The
generated information can help you determine why an expected code replacement did
not occur.

I~ off
Omit code replacement report from the code generation report.

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

* This parameter is enabled when you select Create code generation report.

Command-Line Information

Parameter: GenerateCodeReplacementReport
Type: Boolean

Value: on | off

10-19

1 0 Simulink Coder Parameters: Advanced Parameters

Default: of £

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Report” on page 5-2
Analyze Code Replacements in the Generated Code (Embedded Coder)

Trace Code Replacements Generated Using Your Code Replacement Library
(Embedded Coder)

Determine Why Code Replacement Functions Were Not Used (Embedded Coder)

10-20

Standard math library

Standard math library

Description
Specify standard math library for model.

Category: Code Generation > Interface

Settings

Default: C99 (IS0) or,if Language is set to C++, C++03 (ISO)

C89/C90 (ANSI)

Generates calls to the ISO/IEC 9899:1990 C standard math library.
C99 (ISO)

Generates calls to the ISO/IEC 9899:1999 C standard math library.
C++03 (ISO)

Generates calls to the ISO/TEC 14882:2003 C++ standard math library.

Tips

+ Before setting this parameter, verify that your compiler supports the library you want
to use. If you select a parameter value that your compiler does not support, compiler
errors can occur.

+ If you are using a compiler that does not support ISO/TEC 9899:1999 C, set this
parameter to C89/C90 (ANSI).

* The build process checks whether the specified standard math library and toolchain
are compatible. If they are not compatible, a warning occurs during code generation
and the build process continues.

Dependencies

* C++03 is available for use only if you select C++ for the Language parameter.

* When you change the value of the Language parameter, the standard math library
updates to C99 (150) for C and C++03 (150) for C++.

10-21

1 0 Simulink Coder Parameters: Advanced Parameters

Command-Line Information

Parameter: TargetLangStandard

Type: character vector

Value: 'C89/C90 (ANSI)' | 'C99 (ISO)' | 'C++03 (ISO)'
Default: For C, 'c99 (1s0) '; for C++ 'C++03 (ISO)"'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Valid library
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Specify Single-Precision Data Type for Embedded Application”

“Run-Time Environment Configuration”

10-22

Support non-inlined S-functions

Support non-inlined S-functions

Description
Specify whether to generate code for non-inlined S-functions.

Category: Code Generation > Interface

Settings
Default: Off

v On
Generates code for non-inlined S-functions.

™ off

Does not generate code for non-inlined S-functions. If this parameter is off and the
model includes a non-inlined S-function, an error occurs during the build process.

Tip

+ Inlining S-functions is highly advantageous in production code generation, for
example, for implementing device drivers. In such cases, clear this option to enforce
use of inlined S-functions for code generation.

+ Non-inlined S-functions require additional memory and computation resources, and
can result in significant performance issues. Consider using an inlined S-function
when efficiency is a concern.

Dependencies

* This parameter only appears for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

* Selecting this parameter also selects Support: floating-point numbers and
Support: non-finite numbers. If you clear Support: floating-point numbers or
Support: non-finite numbers, a warning is displayed during code generation
because these parameters are required by the S-function interface.

10-23

1 0 Simulink Coder Parameters: Advanced Parameters

Command-Line Information
Parameter: SupportNonInlinedSFcns
Type: character vector

Value: 'on' | 'off’

Default: 'of £’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

“S-Functions and Code Generation”

10-24

Multiword type definitions

Multiword type definitions

Description

Specify whether to use system-defined or user-defined type definitions for multiword
data types in generated code.

Category: Code Generation > Interface

Settings
Default: System defined

System defined

Use the default system type definitions for multiword data types in generated code.
During code generation, if multiword usage is detected, multiword type definitions
are generated into the file multiword types.h.

User defined

Allows you to control how multiword type definitions are handled during the code
generation process. Selecting this value enables the associated parameter Maximum
word length, which allows you to specify a maximum word length, in bits, for which
the code generation process generates multiword type definitions into the file
multiword types.h. The default maximum word length is 256. If you select 0,
multiword type definitions are not generated into the file multiword types.h.

The maximum word length for multiword types only determines the type definitions
generated and does not impact the efficiency of the generated code. If the maximum
word length for multiword types is set to 0 or too small, an error occurs when the
generated code is compiled. This error is caused by the generated code using a type
that does not have the required type definition. To resolve the error, increase the
maximum word length and regenerate the code. If the maximum word length for
multiword types is larger than required, then multiword types.h might contain
unused type definitions. Unused type definitions do not consume target resources.

Tips

+ Adding a model to a model hierarchy or changing an existing model in the hierarchy
can result in updates to the shared multiword types.h file during code generation.

10-25

1 0 Simulink Coder Parameters: Advanced Parameters

10-26

These updates occur when the new model uses multiword types of length greater than
those of the other models. You must then recompile and, depending on your
development process, reverify previously generated code. To prevent updates to
multiword types.h, determine a maximum word length sufficiently big to cover the
needs of all models in the hierarchy. Configure every model in the hierarchy to use
that same maximum word length.

* The majority of embedded designs do not need multiword types. By setting maximum
word length for multiword types to 0, you can prevent use of multiword variables on
the target. If you use multiword variables with a maximum word length that is 0 or
smaller than required, you are alerted with an error when the generated code is
compiled.

Dependencies

* This parameter appears only for ERT-based targets.
* This parameter requires an Embedded Coder license when generating code.

+ Selecting the value User defined for this parameter enables the associated
parameter Maximum word length.

Command-Line Information

Parameter: ERTMultiwordTypeDef

Type: character vector

Value: 'System defined' | 'User defined'
Default: 'System defined'’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

See Also

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

10-27

1 0 Simulink Coder Parameters: Advanced Parameters

Maximum word length

10-28

Description

Specify a maximum word length, in bits, for which the code generation process generates
system-defined multiword type definitions.

Category: Code Generation > Interface

Settings
Default: 256 for ERT targets, 2048 for GRT targets

Specify a maximum word length, in bits, for which the code generation process generates
multiword type definitions into the file multiword types.h. All multiword type
definitions up to and including this number of bits are generated. If you select 0,
multiword type definitions are not generated into the file multiword types.h.

The maximum word length for multiword types only determines the type definitions
generated and does not impact the efficiency of the generated code. If the maximum word
length for multiword types is set to 0 or too small, an error occurs when the generated
code is compiled. This error is caused by the generated code using a type that does not
have the required type definition. To resolve the error, increase the maximum word
length and regenerate the code. If the maximum word length for multiword types is
larger than required, then multiword types.h might contain unused type definitions.
Unused type definitions do not consume target resources.

Tips

+ Adding a model to a model hierarchy or changing an existing model in the hierarchy
can result in updates to the shared multiword types.h file during code generation.
These updates occur when the new model uses multiword types of length greater than
those of the other models. You must then recompile and, depending on your
development process, reverify previously generated code. To prevent updates to
multiword types.h, determine a maximum word length sufficiently big to cover the
needs of all models in the hierarchy. Configure every model in the hierarchy to use
that same maximum word length.

* The majority of embedded designs do not need multiword types. By setting maximum
word length for multiword types to 0, you can prevent use of multiword variables on

See Also

the target. If you use multiword variables with a maximum word length that is 0 or
smaller than required, you are alerted with an error when the generated code is
compiled.

Dependencies

* This parameter requires an Embedded Coder license when generating code.

* This parameter is enabled by selecting the value User defined for the parameter
Multiword type definitions.

Command-Line Information

Parameter: ERTMultiwordLength

Type: integer

Value: valid quantity of bits representing a word size
Default: 256 for ERT targets, 2048 for GRT targets

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

. “Model Configuration Parameters: Code Generation Interface” on page 9-2

10-29

1 0 Simulink Coder Parameters: Advanced Parameters

Classic call interface

10-30

Description

Specify whether to generate model function calls compatible with the main program
module of the GRT target in models created before R2012a.

Category: Code Generation > Interface

Settings
Default: off (except on for GRT models created before R2012a)

|7On

Generates model function calls that are compatible with the main program module of
the GRT target (grt main.c or grt main.cpp) in models created before R2012a.

This option provides a quick way to use code generated in the current release with a
GRT-based custom target that has a main program module based on pre-R2012a
grt main.corgrt main.cpp.

I off

Disables the classic call interface.
Tips
The following are unsupported:

+ Data type replacement

* Nonvirtual subsystem option Function with separate data

Dependencies

+ Setting Code interface packaging to C++ class disables this option.

* Selecting this option disables the incompatible option Single output/update
function. Clearing this option enables (but does not select) Single output/update
function.

See Also

Command-Line Information
Parameter: GRTInterface
Type: character vector

Value: 'on' | 'off"

Default: 'off' (except 'on' for GRT models created before R2012a)

Recommended Settings

Application Setting

Debugging No impact

Traceability Off

Efficiency Off (execution, ROM), No impact (RAM)
Safety precaution No recommendation

See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Use Discrete and Continuous Time” (Embedded Coder)

10-31

1 0 Simulink Coder Parameters: Advanced Parameters

Use dynamic memory allocation for model initialization

10-32

Description

Control how the generated code allocates memory for model data.

Category: Code Generation > Interface

Settings
Default: off

|7On

Generates a function to dynamically allocate memory (using malloc) for model data
structures.

™ off

Does not generate a dynamic memory allocation function. The generated code
statically allocates memory for model data structures.

Dependencies

This parameter only appears for ERT-based targets with Code interface packaging
set to Reusable function.

This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: GenerateAllocFcn
Type: character vector

Value: 'on' | 'off’

Default: 'off"

Recommended Settings
Application Setting
Debugging No impact

See Also

Application Setting

Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

model step

Related Examples
“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Entry-Point Functions and Scheduling”
“Generate Reentrant Code from Top-Level Models” (Embedded Coder)
“Code Generation of Subsystems”
“Generate Modular Function Code” (Embedded Coder)

10-33

1 0 Simulink Coder Parameters: Advanced Parameters

Use dynamic memory allocation for model block instantiation

Description

Specify whether generated code uses the operator new, during model object registration,
to instantiate objects for referenced models configured with a C++ class interface.

Category: Code Generation > Interface

Settings
Default: off

|7On

Generates code that uses dynamic memory allocation to instantiate objects for
referenced models configured with a C++ class interface. Specifically, during
instantiation of an object for the top model in a model reference hierarchy, the
generated code uses new to instantiate objects for referenced models.

Selecting this option frees a parent model from having to maintain information about
referenced models beyond its direct children.

+ If you select this option, be aware that a bad alloc exception might be thrown,
per the C++ standard, if an out-of-memory error occurs during the use of new. You
must provide code to catch and process the bad alloc exception in case an out-
of-memory error occurs for a new call during construction of a top model object.

+ If Use dynamic memory allocation for model block instantiation is
selected and the base model contains a Model block, the build process might
generate copy constructor and assignment operator functions in the private
section of the model class. The purpose of the functions is to prevent pointer
members within the model class from being copied by other code. For more
information, see “Model Class Copy Constructor and Assignment Operator”
(Embedded Coder).

I off

Does not generate code that uses new to instantiate referenced model objects.

10-34

See Also

Clearing this option means that a parent model maintains information about its
referenced models, including its direct and indirect children.

Dependencies

* This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: UseOperatorNewForModelRefRegistration
Type: character vector

Value: 'on' | 'off’

Default: 'of '

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On

Safety precaution No recommendation
See Also

Related Examples

. “Model Configuration Parameters: Code Generation Interface” on page 9-2
. “Configure Code Interface Options” (Embedded Coder)

10-35

1 0 Simulink Coder Parameters: Advanced Parameters

Single output/update function

10-36

Description
Specify whether to generate the model step function.

Category: Code Generation > Interface

Settings
Default: on

|7On

Generates the model step function for a model. This function contains the output
and update function code for the blocks in the model and is called by rt OneStep to
execute processing for one clock period of the model at interrupt level.

I off

Does not combine output and update function code into a single function, and instead
generates the code in separate model output and model update functions.

Tips

Errors or unexpected behavior can occur if a Model block is part of a cycle, the Model
block is a direct feedthrough block, and an algebraic loop results. For more information
about direct feed through, see “Algebraic Loops” (Simulink).

Simulink Coder ignores this parameter for a referenced model if any of the following
conditions apply to that model:

* Is multi-rate

* Has a continuous sample time

+ Islogging states (using the States or Final states parameters in the Configuration
Parameters > Data Import/Export pane

Single output/update function

Dependencies

Setting Code interface packaging to C++ class forces on and disables this option.

This option and Classic call interface are mutually incompatible and cannot both
be selected through the GUI. Selecting Classic call interface forces off and disables
this option and clearing Classic call interface enables (but does not select) this
option.

When you use this option, you must clear the option Minimize algebraic loop
occurrences on the Model Referencing pane.

If you customize ert main.c or .cpp to read model outputs after each base-rate
model step, selecting both parameters Support: continuous time and Single
output/update function can cause output values read from ert main for a
continuous output port to differ from the corresponding output values in the logged
data for the model. This is because, while logged data is a snapshot of output at major
time steps, output read from ert main after the base-rate model step potentially
reflects intervening minor time steps. The following table lists workarounds that
eliminate the discrepancy.

Work Around Customized Customized
ert_main.c ert_main.cpp
Separate the generated output and update X

functions (clear the Single output/update
function parameter), and insert code in

ert main to read model output values reflecting
only the major time steps. For example, in

ert main, between the model output call and
the model update call, read the model External
outputs global data structure (defined in
model.h).

Select the Single output/update function X X
parameter and insert code in the generated
model.c or .cpp file to return model output
values reflecting only major time steps. For
example, in the model step function, between the
output code and the update code, save the value of
the model External outputs global data
structure (defined in model.h). Then, restore the

value after the update code completes.

10-37

1 0 Simulink Coder Parameters: Advanced Parameters

10-38

Work Around Customized Customized

ert_main.c ert_main.cpp
Place a Zero-Order Hold block before the X X
continuous output port.

Command-Line Information
Parameter: CombineOutputUpdateFcns
Type: character vector

Value: 'on' | 'off"

Default: 'on’

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency On

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2

“rt_OneStep and Scheduling Considerations” (Embedded Coder)

Terminate function required

Terminate function required

Description
Specify whether to generate the model terminate function.

Category: Code Generation > Interface

Settings
Default: on

M on
Generates a model terminate function. This function contains model termination
code and should be called as part of system shutdown.

I off

Does not generate a model terminate function. Suppresses the generation of this
function if you designed your application to run indefinitely and does not require a
terminate function.

Dependencies

* This parameter only appears for ERT-based targets.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: IncludeMdlTerminateFcn
Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact

10-39

1 0 Simulink Coder Parameters: Advanced Parameters

Application Setting

Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

model terminate

Related Examples

. “Model Configuration Parameters: Code Generation Interface” on page 9-2

10-40

Combine signal/state structures

Combine signal/state structures

Description

Specify whether to combine global block signals and global state data into one data
structure in the generated code

Category: Code Generation > Interface

Settings

Default: Off

Y1 On

Combine global block signal data (block I/0) and global state data (DWork vectors)
into one data structure in the generated code.

Off

Store global block signals and global states in separate data structures, block I/O and
DWork vectors, in the generated code.

Tips
The benefits to setting this parameter to On are:

+ Enables tighter memory representation through fewer bitfields, which reduces RAM
usage

+ Enables better alignment of data structure elements, which reduces RAM usage

* Reduces the number of arguments to reusable subsystem and model reference block
functions, which reduces stack usage

* Better readable data structures with more consistent element sorting
Example

For a model that generates the following code:

/* Block signals (auto storage) */
typedef struct {

10-41

1 0 Simulink Coder Parameters: Advanced Parameters

struct {
uint T LogicalOperator:1;
uint T UnitDelayl:1;
} bitsForTIDO;
} BlockIO;
/* Block states (auto storage) */
typedef struct {
struct {
uint T UnitDelay DSTATE:1
uint T UnitDelayl DSTATE:1l
} bitsForTIDO;
} D Work;

If you select Combine signal/state structures, the generated code now looks like this:

/* Block signals and states (auto storage)
for system */
typedef struct {
struct {
uint T LogicalOperator:1;
uint T UnitDelayl:1;
uint T UnitDelay DSTATE:1;
uint T UnitDelayl DSTATE:1;
} bitsForTIDO;
} D _Work;

Dependencies

This parameter:

* Appears only for ERT-based targets.

* Requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CombineSignalStateStructs
Type: character vector

Value: 'on' | 'off"

Default: of £

10-42

See Also

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On

Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Global Block I/O Structure”

“Storage Classes for Block States”

10-43

1 0 Simulink Coder Parameters: Advanced Parameters

Internal data visibility

Description

Specify whether to generate internal data structures such as Block I/0, DWork vectors,
Run-time model, Zero-crossings, and continuous states as public, private, or
protected data members of the C++ model class.

Category: Code Generation > Interface

Settings

Default: private

public
Generates internal data structures as public data members of the C++ model class.
private

Generates internal data structures as private data members of the C++ model
class.

protected

Generates internal data structures as protected data members of the C++ model
class.

Dependencies

* This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: InternalMemberVisibility
Type: character vector

Value: 'public' | 'private' | 'protected’
Default: 'private’

10-44

See Also

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Configure Code Interface Options” (Embedded Coder)

10-45

1 0 Simulink Coder Parameters: Advanced Parameters

Internal data access

10-46

Description

Specify whether to generate access methods for internal data structures, such as Block
I/0, DWork vectors, Run-time model, Zero-crossings, and continuous states, for the C++
model class.

Category: Code Generation > Interface

Settings
Default: None

None

Does not generate access methods for internal data structures for the C++ model
class.

Method

Generates noninlined access methods for internal data structures for the C++ model
class.

Inlined method

Generates inlined access methods for internal data structures for the C++ model
class.

Dependencies

* This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

* This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: GenerateInternalMemberAccessMethods

Type: character vector
Value: 'None' | 'Method' | 'Inlined method'
Default: 'None'

See Also

Recommended Settings
Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Related Examples

Setting

Inlined method
Inlined method
Inlined method

No recommendation

“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Configure Code Interface Options” (Embedded Coder)

10-47

1 0 Simulink Coder Parameters: Advanced Parameters

Generate destructor

10-48

Description

Specify whether to generate a destructor for the C++ model class.

Category: Code Generation > Interface

Settings
Default: on

v On
Generates a destructor for the C++ model class.

™ off

Does not generate a destructor for the C++ model class.

Dependencies

This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: GenerateDestructor
Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

See Also

Application Setting

Efficiency No impact

Safety precaution No recommendation
See Also

Related Examples
“Model Configuration Parameters: Code Generation Interface” on page 9-2

“Configure Code Interface Options” (Embedded Coder)

10-49

1 0 Simulink Coder Parameters: Advanced Parameters

MAT-file logging

10-50

Description
Specify MAT-file logging

Category: Code Generation > Interface

Settings
Default: on for the GRT target, off for ERT-based targets

|7On

Enable MAT-file logging. When you select this option, the generated code saves to
MAT-files simulation data specified in one of the following ways:

+ Configuration Parameters > Data Import/Export (see “Model Configuration
Parameters: Data Import/Export” (Simulink))

* To Workspace blocks
* To File blocks
* Scope blocks with the Log data to workspace parameter enabled

In simulation, this data would be written to the MATLAB workspace, as described in
“Export Simulation Data” (Simulink) and “Configure Signal Data for Logging”.
Setting MAT-file logging redirects the data to a MAT-file instead. The file is named
model .mat, where model is the name of your model.

I off
Disable MAT-file logging. Clearing this option has the following benefits:
+ Eliminates overhead associated with supporting a file system, which typically is

not a requirement for embedded applications

+ Eliminates extra code and memory usage required to initialize, update, and clean
up logging variables

* Under certain conditions, eliminates code and storage associated with root output
ports

MAT-file logging

* Omits the comparison between the current time and stop time in the
model step, allowing the generated program to run indefinitely, regardless of
the stop time setting

Dependencies

* When you select MAT-file logging, you must also select the configuration
parameters Support: non-finite numbers and, if you use an ERT-based system
target file, Support: floating-point numbers.

+ Selecting this option enables MAT-file variable name modifier.

* For ERT-based system target files, clear this parameter if you are using exported
function calls.

Limitations

MAT-file logging does not support file-scoped data, for example, data items to which you
apply the built-in custom storage class FileScope.

In a referenced model, only the following data logging features are supported:
* To File blocks
+ State logging — the software stores the data in the MAT-file for the top model.

In the context of the Embedded Coder product, MAT-file logging does not support the
following IDEs: Analog Devices® Visual DSP++®, Texas Instruments™ Code Composer
Studio™, Wind River® DIAB/GCC.

MAT-file logging does not support Outport blocks to which you apply the storage class
ImportedExternPointer or custom storage classes that yield nonaddressable data in
the generated code. For example, the custom storage class GetSet causes the Outport to
appear in the generated code as a function call, which is not addressable. This limitation
applies whether you apply the storage class directly by using, for example, the Model
Data Editor, or by resolving the Outport to a Simulink.Signal object that uses the
storage class. As a workaround, apply the storage class to the signal that enters the
Outport block.

10-51

1 0 Simulink Coder Parameters: Advanced Parameters

Command-Line Information

Parameter: MatFileLogging

Type: character vector

Value: 'on' | 'off’

Default: 'on' for the GRT target, 'off' for ERT-based targets

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off
Safety precaution Off

See Also

Related Examples
“Model Configuration Parameters: Code Generation Interface” on page 9-2
“Log Program Execution Results”
“Log Data for Analysis”
“Virtualized Output Ports Optimization” (Embedded Coder)
“Virtualized Output Ports Optimization” (Embedded Coder)

10-52

MAT-file variable name modifier

MAT-file variable name modifier

Description
Select the text to add to MAT-file variable names.

Category: Code Generation > Interface

Settings
Default: rt

rt

Adds prefix text.
_rt

Adds suffix text.
none

Does not add text.

Dependency

If you have an Embedded Coder license, for the GRT target or ERT-based targets, this
parameter is enabled by MAT-file logging.

Command-Line Information
Parameter: LogvVarNameModifier
Type: character vector

Value: 'none' | 'rt ' | ' rt'
Default: 'rt '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

10-53

1 0 Simulink Coder Parameters: Advanced Parameters

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Interface” on page 9-2
. “Log Program Execution Results”

. “Log Data for Analysis”

10-54

Verbose build

Verbose build

Description
Display code generation progress.

Category: Code Generation

Settings
Default: on

|7On

The MATLAB Command Window displays progress information indicating code
generation stages and compiler output during code generation.

I off

Does not display progress information.

Command-Line Information
Parameter: RTWVerbose

Type: character vector

Value: 'on' | 'off"

Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability No impact
Efficiency No impact

Safety precaution No recommendation

10-55

1 0 Simulink Coder Parameters: Advanced Parameters

See Also
Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Debug”

10-56

Retain .rtw file

Retain .rtw file

Description
Specify model . rtw file retention.

Category: Code Generation

Settings
Default: off

|7On

Retains the model. rtw file in the current build folder. This parameter is useful if
you are modifying the target files and need to look at the file.

I off
Deletes the model.rtw from the build folder at the end of the build process.

Command-Line Information
Parameter: RetainRTWFile
Type: character vector

Value: 'on' | "off"

Default: 'off"’

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

10-57

1 0 Simulink Coder Parameters: Advanced Parameters

See Also
Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Debug”

10-58

Profile TLC

Profile TLC

Description

Profile the execution time of TLC files.

Category: Code Generation

Settings
Default: off

|7On

The TLC profiler analyzes the performance of TLC code executed during code
generation, and generates an HTML report.

I off

Does not profile the performance.

Command-Line Information
Parameter: ProfileTLC

Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

10-59

1 0 Simulink Coder Parameters: Advanced Parameters

See Also
Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Debug”

10-60

Start TLC debugger when generating code

Start TLC debugger when generating code

Description
Specify use of the TLC debugger

Category: Code Generation

Settings
Default: Off

¥ On
The TLC debugger starts during code generation.

I off
Does not start the TLC debugger.

Tips

You can also start the TLC debugger by entering the -dc argument into the System
target file field.

To invoke the debugger and run a debugger script, enter the -df filename
argument into the System target file field.

Command-Line Information
Parameter: TLCDebug

Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting
Debugging On
Traceability No impact

10-61

1 0 Simulink Coder Parameters: Advanced Parameters

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

. “Model Configuration Parameters: Code Generation” on page 4-2
. “Debug”

10-62

Start TLC coverage when generating code

Start TLC coverage when generating code

Description
Generate the TLC execution report.

Category: Code Generation

Settings
Default: off

|7On

Generates . 1og files containing the number of times each line of TLC code is
executed during code generation.

I off

Does not generate a report.
Tip

You can also generate the TLC execution report by entering the -dg argument into the
System target file field.

Command-Line Information
Parameter: TLCCoverage
Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact

10-63

1 0 Simulink Coder Parameters: Advanced Parameters

Application Setting
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
° “Debug”

10-64

Enable TLC assertion

Enable TLC assertion

Description
Produce the TLC stack trace

Category: Code Generation

Settings
Default: off

|7On

The build process halts if a user-supplied TLC file contains an $assert directive
that evaluates to FALSE.
I off

The build process ignores TLC assertion code.

Command-Line Information
Parameter: TLCAssert

Type: character vector

Value: 'on' | 'off"

Default: 'off"'

Recommended Settings

Application Setting

Debugging On

Traceability No impact
Efficiency No impact

Safety precaution No recommendation

10-65

1 0 Simulink Coder Parameters: Advanced Parameters

See Also
Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2
“Debug”

10-66

Custom FFT library callback

Custom FFT library callback

Description

Specify a callback class for FFTW library calls in code generated for FFT functions in
MATLAB code. This parameter applies to MATLAB code in a MATLAB Function block, a
Stateflow chart, or a System object™ associated with a MATLAB System block.

To improve the execution speed of FFT functions, the code generator produces calls to the
FFTW library that you specify in the callback class.

Category: Code Generation

Settings
Default: '’

Specify the name of an FFT library callback class. If this parameter is empty, the code
generator uses its own algorithms for FFT functions instead of calling the FFTW library.

Limitation

The class definition file must be in a folder on the MATLAB path.

Tip

Specify only the name of the class. Do not specify the name of the class definition file.

Command-Line Information
Parameter: CustomFFTCallback
Type: character vector

Value: class name
Default: '’

10-67

1 0 Simulink Coder Parameters: Advanced Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

More About

“Model Configuration Parameters: Code Generation” on page 4-2

“Speed Up Fast Fourier Transforms in Code Generated from a MATLAB Function
Block”

External Websites

www.fftw.org

10-68

http://www.fftw.org

Custom LAPACK library callback

Custom LAPACK library callback

Description

Specify LAPACK library callback class for LAPACK calls in code generated from
MATLAB code. This parameter applies to MATLAB code in a MATLAB Function block, a
Stateflow chart, or a System object associated with a MATLAB System block.

Category: Code Generation

Settings
Default: '’

Specify the name of a LAPACK callback class that derives from
coder.LAPACKCallback. If you specify a LAPACK callback class, for certain linear
algebra functions, the code generator produces LAPACK calls by using the LAPACKE C
interface to your LAPACK library. The callback class provides the name of your
LAPACKE header file and the information required to link to your LAPACK library. If
this parameter is empty, the code generator produces code for linear algebra functions
instead of a LAPACK call.

Limitation

The class definition file must be in a folder on the MATLAB path.

Tip

Specify only the name of the class. Do not specify the name of the class definition file.

Command-Line Information
Parameter: CustomLAPACKCallback
Type: character vector

Value: class name
Default: '’

10-69

1 0 Simulink Coder Parameters: Advanced Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation” on page 4-2

“Speed Up Linear Algebra in Code Generated from a MATLAB Function Block”

10-70

Shared checksum length

Shared checksum length

Description
Specify character length of $C token.

Category: Code Generation > Symbols

Settings
Default: 8 Minimum: 1 Maximum: 15

Specify an integer value that indicates the number of characters to expand the $C token
for the Shared utilities parameter.

Tip
To avoid the possibility of a naming collision, consider increasing this parameter value.

Dependencies

This parameter:

Appears only for ERT-based targets.

Requires Embedded Coder when generating code.

Command-Line Information
Parameter: SharedChecksumLength
Type: integer

Value: valid value

Default: 8

Recommended Settings

Application Setting
Debugging No impact

10-71

1 0 Simulink Coder Parameters: Advanced Parameters

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Symbols” on page 7-2
. “Shared utilities” on page 7-28

10-72

EMX array utility functions identifier format

EMX array utility functions identifier format

Description

Customize generated identifiers for emxArray (embeddable mxArray) utility functions.
The code generator produces emxArray types for variable-size arrays that use
dynamically allocated memory. It produces emxArray utility functions that create and
interact with variables that have an emxArray type. This parameter applies to MATLAB
code in a MATLAB Function block, a Stateflow chart, or a System object associated with
a MATLAB System block. This parameter does not apply to:

* Input or output signals

* Parameters

* Global variables

+ Discrete state properties of System objects associated with a MATLAB System block

Category: Code Generation > Symbols

Settings
Default: emxSMSN

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.

Token Description

$M Insert name-mangling text if required to avoid naming collisions.
Required.

SN Insert the utility function name into identifier. For example,
Init real.

SR Insert root model name into identifier, replacing unsupported
characters with the underscore () character.
Required for model referencing.

10-73

1 0 Simulink Coder Parameters: Advanced Parameters

10-74

Tips
* The code generator applies the identifier format specified by this parameter before it

applies the formats specified by other identifier format control parameters.

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

+ If you specify SR, the value that you specify for Maximum identifier length must be
large enough to accommodate full expansions of the SR and $M tokens.

Dependencies

This parameter:

+ Appears only for ERT-based targets.

* Requires an Embedded Coder when generating code.

Command-Line Information
Parameter: CustomSymbolStrEmxFcn
Type: character vector

Value: valid combination of tokens
Default: emxSMSN

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

See Also

See Also

Related Examples
“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)
“Control Name Mangling in Generated Identifiers” (Embedded Coder)

“Identifier Format Control Parameters Limitations” (Embedded Coder)

10-75

1 0 Simulink Coder Parameters: Advanced Parameters

EMX array types identifier format

10-76

Description

Customize generated identifiers for emxArray (embeddable mxArray) types. The code
generator produces emxArray types for variable-size arrays that use dynamically
allocated memory. This parameter applies to MATLAB code in a MATLAB Function
block, a Stateflow chart, or a System object associated with a MATLAB System block.
This parameter does not apply to:

* Input or output signals

* Parameters

* Global variables

+ Discrete state properties of System objects associated with a MATLAB System block

Category: Code Generation > Symbols

Settings

Default: emxArray $MSN

Enter a macro that specifies whether, and in what order, certain text is to be included in
the generated identifier. The macro can include a combination of the following format

tokens.

Token Description

$M Insert name-mangling text if required to avoid naming collisions.
Required.

SN Insert type name. For example, real T

SR Insert root model name into identifier, replacing unsupported
characters with the underscore (_) character.
Required for model referencing.

EMX array types identifier format

Tips
* The code generator applies the identifier format specified by this parameter before it

applies the formats specified by other identifier format control parameters.

* Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for
name-mangling text.

+ If you specify SR, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the SR and $M tokens.

Dependencies

This parameter:

+ Appears only for ERT-based targets.

* Requires an Embedded Coder when generating code.

Command-Line Information
Parameter: CustomSymbolStrEmxType
Type: character vector

Value: valid combination of tokens
Default: emxArray MSSN

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

10-77

1 0 Simulink Coder Parameters: Advanced Parameters

See Also

Related Examples
“Model Configuration Parameters: Code Generation Symbols” on page 7-2
“Identifier Format Control” (Embedded Coder)
“Control Name Mangling in Generated Identifiers” (Embedded Coder)

“Identifier Format Control Parameters Limitations” (Embedded Coder)

10-78

Use Simulink Coder Features

Use Simulink Coder Features

Description

Enable “Simulink Coder” features for models deployed to “Simulink Supported
Hardware” (Simulink).

Note If you enable this parameter in a model where Simulink Coder is not installed or
available in the environment, a question dialog box prompts you to update the model to
build without Simulink Coder features.

Category: Hardware Implementation

Settings

I On
Enable the Simulink Coder features.

I off

Disable the Simulink Coder features.

Indicates that this parameter is enabled. To disable it, first disable the “Use
Embedded Coder Features” (Embedded Coder) parameter.

Dependencies

This parameter requires a Simulink Coder or Embedded Coder license.

Command-Line Information
Parameter: UseSimulinkCoderFeatures
Value: 'on' or 'off’

Default: 'on’

10-79

1 0 Simulink Coder Parameters: Advanced Parameters

See Also

Related Examples
“Model Configuration”

10-80

Comment style

Comment style

Description
Specify comment style in the generated C/C++ code.

Category: Code Generation > Comments

Settings
Default: Auto

Auto

For C code, generate single- or multiple-line comments delimited by /* and */. For C
++ code, generate single-line comments preceded by //.

Multi-line

Generate single- or multiple-line comments delimited by /* and */.

Example of code generated by using the multiline comment style is:

/* Sum: '<Root>/Sum' incorporates:
* Constant: '<Root>/INC'
* UnitDelay: '<Root>/X'
*/
rtDW.X g++;
Single-line

Generate single-line comments preceded by / /.

Example of code generated by using the single-line comment style is:
// Sum: '<Root>/Sum' incorporates:

// Constant: '<Root>/INC'

// UnitDelay: '<Root>/X'

rtDW.X g++;

Note For C code generation, select Single-1ine only if your compiler supports it.

10-81

1 0 Simulink Coder Parameters: Advanced Parameters

Dependencies

This parameter:

Appears only for ERT-based targets.

Requires Embedded Coder when generating code.

Command-Line Information
Parameter: CommentStyle

Type: character vector

Value: Auto | Multi-line | Single-line
Default: Auto

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Related Examples

“Model Configuration Parameters: Code Generation Comments” on page 6-2

10-82

11

Configuration Parameters for Simulink
Models

+ “Code Generation Pane: RSim Target” on page 11-2

* “Code Generation Pane: S-Function Target” on page 11-6
* “Code Generation Pane: Tornado Target” on page 11-9

* “Code Generation: Coder Target Pane” on page 11-27

+ “Hardware Implementation Pane” on page 11-50

+ “Hardware Implementation Pane” on page 11-60

+ “Hardware Implementation Pane” on page 11-71

+ “Hardware Implementation Pane” on page 11-78

+ “Recommended Settings Summary for Model Configuration Parameters”
on page 11-85

11 Configuration Parameters for Simulink Models

Code Generation Pane: RSim Target

The Code Generation > RSim Target pane includes the following parameters when
the Simulink Coder product is installed on your system and you specify the rsim.tlc
system target file.

Parameter loading

Enable RSim executable to load parameters from a MAT-file

Solver

Solver selection: |auto -

Storage classes

Force storage classes to AUTO

In this section...

“Code Generation: RSim Target Tab Overview” on page 11-2
“Enable RSim executable to load parameters from a MAT-file” on page 11-3

“Solver selection” on page 11-3

“Force storage classes to AUTO” on page 11-4

Code Generation: RSim Target Tab Overview

Set configuration parameters for rapid simulation.

Configuration

This tab appears only if you specify rsim. t1lc as the “System target file” on page 4-6.

See Also

* “Configure and Build Model for Rapid Simulation”
* “Run Rapid Simulations”

* “Code Generation Pane: RSim Target” on page 11-2

11-2

Code Generation Pane: RSim Target

Enable RSim executable to load parameters from a MAT-file
Specify whether to load RSim parameters from a MAT-file.
Settings
Default: on
M On
Enables RSim to load parameters from a MAT-file.
I off

Disables RSim from loading parameters from a MAT-file.

Command-Line Information

Parameter: RSIM PARAMETER LOADING
Type: character vector

Value: 'on' | 'off’

Default: 'on'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

“Create a MAT-File That Includes a Model Parameter Structure”

Solver selection

Instruct the target how to select the solver.
Settings

Default: auto

11-3

11 Configuration Parameters for Simulink Models

11-4

auto

Lets the code generator choose the solver. The code generator uses the Simulink
solver module if you specify a variable-step solver on the Solver pane. Otherwise, the
code generator uses a built-in solver.

Use Simulink solver module
Instructs the code generator to use the variable-step solver that you specify on the
Solver pane.

Use fixed-step solvers

Instructs the code generator to use the fixed-step solver that you specify on the
Solver pane.

Command-Line Information
Paranuﬁer:RSIM_SOLVER_SELECTION

Type: character vector

Value: 'auto' | 'usesolvermodule' | 'usefixstep'
Default: 'auto’

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Force storage classes to AUTO

Specify whether to retain your storage class settings in a model or to use the automatic
settings.

Settings
Default: on

|7On

Forces the Simulink software to determine storage classes.

Code Generation Pane: RSim Target

™ off

Causes the model to retain storage class settings.

Tips

* Turn this parameter on for flexible custom code interfacing.

* Turn this parameter off to retain storage class settings such as ExportedGlobal or

ImportExtern.

Command-Line Information

Parameter: RSIM STORAGE CLASS AUTO

Type: character vector
Value: 'on' | 'off"
Default: 'on’

Recommended Settings
Application

Debugging
Traceability

Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

11-5

11 Configuration Parameters for Simulink Models

Code Generation Pane: S-Function Target

The Code Generation > S-Function Target pane includes the following parameters
when the Simulink Coder product is installed on your system and you specify the
rtwsfcn.tlc system target file.
¥| Create new maodel
Use value for tunable parameters

Include custom source code

In this section...

“Code Generation S-Function Target Tab Overview” on page 11-6
“Create new model” on page 11-6

“Use value for tunable parameters” on page 11-7

“Include custom source code” on page 11-8

Code Generation S-Function Target Tab Overview

Control code generated for the S-function target (rtwsfcn.tlc).

Configuration

This tab appears only if you specify the S-function target (rtwsfcn.tlc) as the “System
target file” on page 4-6.

See Also

+ “Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-
Function Target”

* “Code Generation Pane: S-Function Target” on page 11-6

Create new model

Create a new model containing the generated S-function block.

11-6

Code Generation Pane: S-Function Target

Settings
Default: on

|7On

Creates a new model, separate from the current model, containing the generated S-
function block.

I off
Generates code but a new model is not created.
Command-Line Information

Parameter: CreateModel
Type: character vector

Value: 'on' | 'off"
Default: 'on'
See Also

“Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function
Target”

Use value for tunable parameters

Use the variable value instead of the variable name in generated block mask edit fields
for tunable parameters.

Settings
Default: off

|7On

Uses variable values for tunable parameters instead of the variable name in the
generated block mask edit fields.

I off

Uses variable names for tunable parameters in the generated block mask edit fields.

11-7

11 Configuration Parameters for Simulink Models

11-8

Command-Line Information
Parameter: UseParamValues
Type: character vector

Value: 'on' | 'off"

Default: 'off"

See Also
“Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function

Target”

Include custom source code
Include custom source code in the code generated for the S-function.
Settings
Default: off
¥ On
Include provided custom source code in the code generated for the S-function.

I off

Do not include custom source code in the code generated for the S-function.

Command-Line Information

Parameter: AlwaysIncludeCustomSrc
Type: character vector

Value: 'on' | 'off"

Default: 'off"

See Also

“Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function
Target”

Code Generation Pane: Tornado Target

Code Generation Pane: Tornado Target

The Code Generation > Tornado Target pane includes the following parameters
when the Simulink Coder product is installed on your system and you specify the
tornado.tlc system target file.

Software environment

Code replacement library: [None v]
Shared code placement: [Shared location v]
Tornado

[C] MAT-file Logging

Code Format | RealTime

[C] stethoScope
[”] Download to VxWorks target

VaWorks
Base task priority 30
Task stack size 16384

External mode options

[C] External mode

In this section...

“Code Generation: Tornado Target Tab Overview” on page 11-10
“Standard math library” on page 11-10

“Code replacement library” on page 11-12

“Shared code placement” on page 11-13

“MAT-file logging” on page 11-14

“MAT-file variable name modifier” on page 11-15

11-9

11 Configuration Parameters for Simulink Models

11-10

In this section...

“Code Format” on page 11-16

“StethoScope” on page 11-17

“Download to VxWorks target” on page 11-18
“Base task priority” on page 11-19

“Task stack size” on page 11-20

“External mode” on page 11-21

“Transport layer” on page 11-22

“MEX-file arguments” on page 11-23

“Static memory allocation” on page 11-24

“Static memory buffer size” on page 11-25

Code Generation: Tornado Target Tab Overview

Control generated code for the Tornado target.
Configuration

This tab appears only if you specify tornado. tlc as the “System target file” on page 4-
6.

See Also

+ Tornado User's Guide from Wind River Systems
* StethoScope User's Guide from Wind River Systems
+ “Asynchronous Support”

* “Code Generation Pane: Tornado Target” on page 11-9

Standard math library
Specify a standard math library for your model.
Settings

Default: C99 (150)

http://www.windriver.com/
http://www.windriver.com/

Code Generation Pane: Tornado Target

C89/C90 (ANSI)

Generates calls to the ISO/IEC 9899:1990 C standard math library.
C99 (ISO)

Generates calls to the ISO/IEC 9899:1999 C standard math library.
C++03 (ISO)

Generates calls to the ISO/IEC 14882:2003 C++ standard math library.

Tips

* The build process checks whether the specified standard math library and toolchain
are compatible. If they are not compatible, a warning occurs during code generation
and the build process continues.

* When you change the value of the Language parameter, the standard math library
updates to ISO/IEC 9899:1999 C (c99 (150)) for C and ISO/IEC 14882:2003 C++ (C
++03 (I1S0)) for C++.

Dependencies

The C++03 (IS0O) math library is available for use only if you select C++ for the
Language parameter.

Command-Line Information

Parameter: TargetLangStandard

Type: character vector

Value: 'C89/C90 (ANSI)' | 'C99 (ISO)' | 'C++03 (ISO)'
Default: 'Cc99 (150)"'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Valid library
Safety precaution No impact
See Also

“Run-Time Environment Configuration”

11-11

11 Configuration Parameters for Simulink Models

11-12

Code replacement library

Specify a code replacement library the code generator uses when producing code for a
model.

Settings
Default: None

None

Does not use a code replacement library.

For more information about selections for this parameter, see “Code replacement library”
on page 9-11.

Tip

Before setting this parameter, verify that your compiler supports the library you want to
use. If you select a parameter value that your compiler does not support, compiler errors
can occur.

Command-Line Information

Parameter: CodeReplacementLibrary

Type: character vector

Value: 'None' | "GNU C99 extensions' | 'Intel IPP for x86-64 (Windows)'
| "Intel IPP/SSE for x86-64 (Windows)' | '"Intel IPP for x86-64
(Windows for MinGW compiler)' |'Intel IPP/SSE for x86-64 (Windows for
MinGW compiler)' | 'Intel IPP for x86/Pentium (Windows)' | '"Intel
IPP/SSE x86/Pentium (Windows)' | 'Intel IPP for x86-64 (Linux)' |
'Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)'

Default: 'None'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Valid library
Safety precaution No impact

Code Generation Pane: Tornado Target

See Also

“Run-Time Environment Configuration”

Shared code placement

Specify the location for generating utility functions, exported data type definitions, and
declarations of exported data with custom storage class.

Settings
Default: Auto

Auto
Operates as follows:
* When the model contains Model blocks, places utility code within the s1prij/
target/ sharedutils folder.

* When the model does not contain Model blocks, places utility code in the build
folder (generally, in model.c or model.cpp).

Shared location

Directs code for utilities to be placed within the s1prj folder in your working folder.

Command-Line Information

Parameter: UtilityFuncGeneration
Type: character vector

Value: 'Auto’' | 'Shared location'
Default: 'Auto’

Recommended Settings

Application Setting

Debugging Shared location

Traceability Shared location

Efficiency No impact (execution, RAM)
Shared location (ROM)

Safety precaution No impact

11-13

11 Configuration Parameters for Simulink Models

11-14

See Also

* “Run-Time Environment Configuration”
+ “Sharing Utility Code”

MAT-file logging

Specify whether to enable MAT-file logging.

Settings

Default: off

|701r1

Enables MAT-file logging. When you select this option, the generated code saves to
MAT-files simulation data specified in one of the following ways:

Configuration Parameters dialog box, Data Import/Export pane (see “Model
Configuration Parameters: Data Import/Export” (Simulink))

To Workspace blocks

Scope blocks with the Log data to workspace parameter enabled

In simulation, this data would be written to the MATLAB workspace, as described in
“Export Simulation Data” (Simulink) and “Configure Signal Data for Logging”.
Setting MAT-file logging redirects the data to a MAT-file instead. The file is named
model .mat, where model is the name of your model.

™ off

Disables MAT-file logging. Clearing this option has the following benefits:

Eliminates overhead associated with supporting a file system, which typically is
not required for embedded applications

Eliminates extra code and memory usage required to initialize, update, and clean
up logging variables

Under certain conditions, eliminates code and storage associated with root output
ports

Omits the comparison between the current time and stop time in the
model step, allowing the generated program to run indefinitely, regardless of
the stop time setting

Code Generation Pane: Tornado Target

Dependencies
Selecting this parameter enables MAT-file variable name modifier.
Limitation

MAT-file logging does not support file-scoped data, for example, data items to which you
apply the built-in custom storage class FileScope.

MAT-file logging does not work in a referenced model, and code is not generated to
implement it.

Command-Line Information
Parameter: MatFilelLogging
Type: character vector

Value: 'on' | 'off"

Default: 'of £

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off

Safety precaution Off

See Also

* “Log Program Execution Results”

* “Log Data for Analysis”

* “Virtualized Output Ports Optimization” (Embedded Coder)
MAT-file variable name modifier

Select the text to add to the MAT-file variable names.

Settings

Default: rt

11-15

11 Configuration Parameters for Simulink Models

rt

Adds prefix text.
_rt

Adds suffix text.

none

Does not add text.
Dependency

If you have an Embedded Coder license, this parameter is enabled by MAT-file logging.

Command-Line Information
Parameter: LogvVarNameModifier
Type: character vector

Value: 'none' | 'rt ' | ' rt!'
Default: 'rt '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* “Log Program Execution Results”

* “Log Data for Analysis”

Code Format

Specify the code format (generated code features).
Settings

Default: RealTime

11-16

Code Generation Pane: Tornado Target

RealTime
Specifies the Real-Time code generation format.
RealTimeMalloc

Specifies the Real-Time Malloc code generation format.

Command-Line Information

Parameter: CodeFormat

Type: character vector

Value: 'RealTime’' | 'RealTimeMalloc'
Default: 'RealTime’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

“Compare System Target File Support”

StethoScope

Specify whether to enable StethoScope, an optional data acquisition and data monitoring
tool.

Settings
Default: off
v On
Enables StethoScope.

I off
Disables StethoScope.

11-17

11 Configuration Parameters for Simulink Models

11-18

Tips

You can optionally monitor and change the parameters of the executing real-time
program using either StethoScope or Simulink External mode, but not both with the
same compiled image.

Dependencies

Enabling StethoScope automatically disables External mode, and vice versa.

Command-Line Information
Parameter: StethoScope
Type: character vector
Value: 'on' | 'off"
Default: 'off"'

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off
Safety precaution Off

See Also

+ Tornado User's Guide from Wind River Systems

+ StethoScope User's Guide from Wind River Systems

Download to VxWorks target

Specify whether to automatically download the generated program to the VxWorks
target.

Settings
Default: off
v On

Automatically downloads the generated program to VxWorks after each build.

http://www.windriver.com/
http://www.windriver.com/

Code Generation Pane: Tornado Target

™ off

Does not automatically download to VxWorks, you must downloaded generated
programs manually.

Tips

+ Automatic download requires specifying the target name and host name in the
makefile.

* Before every build, reset VxWorks by pressing Ctrl+X on the host console or power-
cycling the VxWorks chassis. This clears dangling processes or stale data that exists
in VxWorks when the automatic download occurs.

Command-Line Information
Parameter: DownloadToVxWorks
Type: character vector

Value: 'on' | 'off"

Default: 'off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

See Also

* Tornado User's Guide from Wind River Systems

+ “Asynchronous Support”

Base task priority

Specify the priority with which the base rate task for the model is to be spawned.
Settings

Default: 30

11-19

http://www.windriver.com/

11 Configuration Parameters for Simulink Models

11-20

Tips

+ For a multirate, multitasking model, the code generator increments the priority of
each subrate task by one.

+ The value you specify for this option will be overridden by a base priority specified in
a call to the rt main () function spawned as a task.

Command-Line Information
Parameter: BasePriority
Type: integer

Value: valid value

Default: 30

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Might impact efficiency, depending on other task's
priorities

Safety precaution No impact

See Also

+ Tornado User's Guide from Wind River Systems

+ “Asynchronous Support”

Task stack size

Stack size in bytes for each task that executes the model.
Settings
Default: 16384

Command-Line Information
Parameter: TaskStackSize
Type: integer

Value: valid value

http://www.windriver.com/

Code Generation Pane: Tornado Target

Default: 16384

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Larger stack may waste space

Safety precaution Larger stack reduces the possibility of overflow
See Also

+ Tornado User's Guide from Wind River Systems

+ “Asynchronous Support”

External mode

Specify whether to enable communication between the Simulink model and an
application based on a client/server architecture.

Settings
Default: on

|7On

Enables External mode. The client (Simulink model) transmits messages requesting
the server (application) to accept parameter changes or to upload signal data. The
server responds by executing the request.

I off

Disables External mode.
Dependencies

Selecting this parameter enables:

* Transport layer

+ MEX-file arguments

11-21

http://www.windriver.com/

11 Configuration Parameters for Simulink Models

11-22

+ Static memory allocation

Command-Line Information
Parameter: ExtMode
Type: character vector
Value: 'on' | 'off"
Default: 'on’

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

“Set Up and Use Host/Target Communication Channel”

Transport layer

Specify the transport protocol for External mode communications.
Settings

Default: tcpip

tcpip
Applies a TCP/IP transport mechanism. The MEX-file name is ext comm.

Tip

The MEX-file name displayed next to Transport layer cannot be edited in the
Configuration Parameters dialog box. For targets provided by MathWorks, the value is
specified in matlabroot/toolbox/simulink/simulink/extmode transports.m.

Dependency

This parameter is enabled by the External mode check box.

Code Generation Pane: Tornado Target

Command-Line Information
Parameter: ExtModeTransport
Type: integer

Value: 0

Default: 0

Recommended Settings
Application

Debugging
Traceability

Efficiency

Safety precaution

See Also

“Target Interfacing”

MEX-file arguments

Setting

No impact
No impact
No impact

No impact

Specify arguments to pass to an External mode interface MEX-file for communicating

with executing targets.
Settings

Default: '’

For TCP/IP interfaces, ext comm allows three optional arguments:

* Network name of your target (for example, 'myPuter' or '148.27.151.12")

* Verbosity level (0 for no information or 1 for detailed information)

* TCP/IP server port number (an integer value between 256 and 65535, with a default

of 17725)

Dependency

This parameter is enabled by the External mode check box.

11-23

11 Configuration Parameters for Simulink Models

11-24

Command-Line Information
Parameter: ExtModeMexArgs
Type: character vector

Value: valid arguments
Default: '

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Target Interfacing”

* “Choose Communication Protocol for Client and Server”

Static memory allocation

Control the memory buffer for External mode communication.
Settings

Default: off

|7On

Enables the Static memory buffer size parameter for allocating allocate dynamic
memory.

™ off

Uses a static memory buffer for External mode instead of allocating dynamic memory
(calls to malloc).

Tip

To determine how much memory you need to allocate, select verbose mode on the target
to display the amount of memory it tries to allocate and the amount of memory available.

Code Generation Pane: Tornado Target

Dependencies

* This parameter is enabled by the External mode check box.
* This parameter enables Static memory buffer size.

Command-Line Information
Parameter: ExtModeStaticAlloc
Type: character vector

Value: 'on' | 'off"

Default: 'off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

“Configure External Mode Options for Code Generation”

Static memory buffer size

Specify the memory buffer size for External mode communication.
Settings

Default: 1000000

Enter the number of bytes to preallocate for External mode communications buffers in
the target.

Tips

+ If you enter too small a value for your application, External mode issues an out-of-
memory error.

* To determine how much memory you need to allocate, select verbose mode on the
target to display the amount of memory it tries to allocate and the amount of memory
available.

11-25

11 Configuration Parameters for Simulink Models

Dependency

This parameter is enabled by Static memory allocation.

Command-Line Information

Parameter: ExtModeStaticAllocSize
Type: integer

Value: valid value

Default: 1000000

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

“Configure External Mode Options for Code Generation”

11-26

Code Generation: Coder Target Pane

Code Generation: Coder Target Pane

' Configuration Parameters: untitled/Canfiguration (Active)

[E=8 Eoh X0

% Commonly Used Parameters

= All Parameters ‘

Select:
Solver
Data Import/Export
» Optimization
» Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
4 Code Generation
Report
Comments
Symbols
Custom Code
Interface
Code Style
Verification
Templates
Code Placement
Data Type Replacement
Memory Sections
Coder Target
> HDL Code Generation

Tool Chain Automation ‘ Target Hardware Resources

Run-Time

Build format:

Build action: [Bui\d_and_execute -

Overrun notification: | None n

vendor Tool Chain

Configuration:

Compiler options string:

Linker options string:

System stack size (MAUs): 512

Code Generation

[Z1 Profile real-time execution

Tool Chain Automation

Maximum time allowed to build project (s): 1000
Maximum time allowed to complete IDE operation (s): 10
Export IDE link handle to base workspace

IDE link handle name: IDE_Obj

Diagnostics

Source file replacement: |warning =

Get From IDE
Get From IDE

Resat

Reset

0K ” Cancel ” Help

n

Apply

In this section...

on page 11-28

“Build format” on page 11-30
“Build action” on page 11-31

“Overrun notification” on page 11-34

“Code Generation: Coder Target Pane Overview (previously “IDE Link Tab Overview”)”

“Coder Target: Tool Chain Automation Tab Overview” on page 11-29

11-27

11 Configuration Parameters for Simulink Models

11-28

In this section...

“Function name” on page 11-35

“Configuration” on page 11-36

“Compiler options string” on page 11-37

“Linker options string” on page 11-38

“System stack size (MAUSs)” on page 11-39

“Profile real-time execution” on page 11-40

“Profile by” on page 11-42

“Number of profiling samples to collect” on page 11-43
“Maximum time allowed to build project (s)” on page 11-44
“Maximum time allowed to complete IDE operation (s)” on page 11-45
“Export IDE link handle to base workspace” on page 11-46
“IDE link handle name” on page 11-47

“Source file replacement” on page 11-48

Code Generation: Coder Target Pane Overview (previously “IDE Link
Tab Overview”)

Configure the parameters for:

* Tool Chain Automation — How the code generator interacts with third-party software
build toolchains.

+ Target Hardware Resources — The IDE toolchain and properties of the physical
hardware, such as board, operating system, memory, and peripherals.

See Also

* “Coder Target: Tool Chain Automation Tab Overview” (Embedded Coder)
* “Coder Target: Target Hardware Resources Tab Overview” (Embedded Coder)

Code Generation: Coder Target Pane

Coder Target: Tool Chain Automation Tab Overview

% Configuration Parameters: untitled/Configuration (Active) =8 E=R===
% Commonly Used Parameters | = All Parameters ‘
Select: Tool Chain Automation ‘ Target Hardware Resources
Solver Run-Time
Data Import/Export
» Optimization Build format:
» Diagnostics
Hardware Implementation Build action: [Bui\d_and_execute -
Model Refe
ode Reterencing Overrun notification:
Simulation Target
4 Code G it
ode Leneration vendor Tool Chain
Report
Comments Configuration:
Symbols =
Custom Code Compiler options string: Get From IDE Resat
Interface
Code Style Linker options string: Get From IDE Reset
Verificat]
T:;;T:t‘eusn System stack size (MAUs): 512
Ci
ode Placement Code Generation
Data Type Replacement
Memory Sections [Z1 Profile real-time execution
Coder Target
> HDL Code Generation Tool Chain Automation
Maximum time allowed to build project (s): 1000
Maximum time allowed to complete IDE operation (s): 10

Export IDE link handle to base workspace

IDE link handle name: IDE_Obj

Diagnostics

Source file replacement: |warning =

[0K ” Cancel ” Help Apply

The Tool Chain Automation Tab is only visible under the Coder Target pane.

The following table lists the parameters on the Tool Chain Automation Tab.

* “Build format” on page 11-30
+ “Build action” on page 11-31

+ “Overrun notification” on page 11-34

+ “Function name” on page 11-35

+ “Configuration” on page 11-36

11-29

11 Configuration Parameters for Simulink Models

* “Compiler options string” on page 11-37

+ “Linker options string” on page 11-38

+ “System stack size (MAUs)” on page 11-39

+ “System heap size (MAUs)”

+ “Profile real-time execution” on page 11-40

+ “Profile by” on page 11-42

* “Number of profiling samples to collect” on page 11-43

+ “Maximum time allowed to build project (s)” on page 11-44
+ “Maximum time allowed to complete IDE operation (s)” on page 11-45
+ “Export IDE link handle to base workspace” on page 11-46
+ “IDE link handle name” on page 11-47

+ “Source file replacement” on page 11-48

Build format

Defines how the code generator responds when you press Ctrl+B to build your model.
Settings

Default: Project

Project
Builds your model as an IDE project.
Makefile

Creates a makefile and uses it to build your model.
Dependencies
Selecting Makefile removes the following parameters:
* Code Generation

+ Profile real-time execution
Profile by

Number of profiling samples to collect

11-30

Code Generation: Coder Target Pane

+ Link Automation

Maximum time allowed to build project (s)
* Maximum time allowed to complete IDE operation (s)
+ Export IDE link handle to base workspace
+ IDE link handle name

Command-Line Information
Parameter: buildFormat

Type: character vector

Value: 'Project' | '"Makefile'
Default: 'Build and execute’

Recommended Settings

Application Setting
Debugging Project
Traceability Project
Efficiency No impact
Safety precaution No impact
See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Build action

Defines how the code generator responds when you press Ctrl+B to build your model.
Settings

Default: Build and execute

If you set Build format to Project, select one of the following options:

Build and execute

Builds your model, generates code from the model, and then compiles and links the
code. After the software links your compiled code, the build process downloads and
runs the executable on the processor.

11-31

11 Configuration Parameters for Simulink Models

Create project

Directs the code generator to create a new project in the IDE. The command line
equivalent for this setting is Create.

Archive library

Invokes the IDE Archiver to build and compile your project, but It does not run the
linker to create an executable project. Instead, the result is a library project.

Build

Builds a project from your model. Compiles and links the code. Does not download
and run the executable on the processor.

Create processor in the loop project
Directs the code generator to create PIL algorithm object code as part of the project
build.

If you set Build format to Makefile, select one of the following options:

Create makefile

Creates a makefile. For example, “.mk”. The command line equivalent for this setting
is Create.

Archive library

Creates a makefile and an archive library. For example, “.a” or “.lib”.
Build

Creates a makefile and an executable. For example, “.exe”.

Build and execute

Creates a makefile and an executable. Then it evaluates the execute instruction
under the Execute tab in the current XMakefile configuration.

Dependencies

Selecting Archive library removes the following parameters:

* Overrun notification
* Function name
+ Profile real-time execution

* Number of profiling samples to collect

11-32

Code Generation: Coder Target Pane

* Linker options string

* Get from IDE

* Reset

* Export IDE link handle to base workspace

Selecting Create processor in the loop project removes the following
parameters:

* Overrun notification

* Function name

* Profile real-time execution

* Number of profiling samples to collect

* Linker options string

* Get from IDE

* Reset

+ Export IDE link handle to base workspace with the option set to export the
handle

Command-Line Information

Parameter: buildAction

Type: character vector

Value: 'Build' | 'Build and execute' | 'Create' | 'Archive library' |
'Create processor in the loop project'

Default: 'Build and execute’

Recommended Settings

Application Setting

Debugging Build and execute
Traceability Archive library
Efficiency No impact

Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

11-33

11 Configuration Parameters for Simulink Models

11-34

For more information about PIL and its uses, refer to the “Verifying Generated Code via
Processor-in-the-Loop” topic.

Overrun notification

Specifies how your program responds to overrun conditions during execution.
Settings

Default: None

None
Your program does not notify you when it encounters an overrun condition.
Print message

Your program prints a message to standard output when it encounters an overrun
condition.

Call custom function
When your program encounters an overrun condition, it executes a function that you
specify in Function name.

Tips

* The definition of the standard output depends on your configuration.

Dependencies

Selecting Call custom function enables the Function name parameter.

Setting this parameter to Call custom function enables the Function name
parameter.

Command-Line Information

Parameter: overrunNotificationMethod

Type: character vector

Value: 'None' | 'Print message' | 'Call custom function'
Default: 'None'

Code Generation: Coder Target Pane

Recommended Settings

Application

Setting

Debugging Print message or Call custom function
Traceability Print message

Efficiency None

Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Function name

Specifies the name of a custom function your code runs when it encounters an overrun

condition during execution.

Settings
No Default

Dependencies

This parameter is enabled by setting Overrun notification to

Call custom function.

Command-Line Information

Parameter: overrunNotificationFcn

Type: character vector
Value: no default
Default: no default

Recommended Settings

Application Setting
Debugging String
Traceability String
Efficiency No impact
Safety precaution No impact

11-35

11 Configuration Parameters for Simulink Models

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Configuration

Sets the Configuration for building your project from the model.
Settings
Default: Custom

Custom

Lets the user apply a specialized combination of build and optimization settings.
Custom applies the same settings as the Release project configuration in IDE, except:

* The compiler options do not use optimizations.
* The memory configuration specifies a memory model that uses Far Aggregate
for data and Far for functions.

Debug

Applies the Debug Configuration defined by the IDE to the generated project and
code.

Release
Applies the Release project configuration defined by the IDE to the generated

project and code.

Dependencies
* Selecting Custom disables the reset options for Compiler options string and
Linker options string.

* Selecting Release sets the Compiler options string to the settings defined by the
IDE.

+ Selecting Debug sets the Compiler options string to the settings defined by the
IDE.

11-36

Code Generation: Coder Target Pane

Command-Line Information

Parameter: projectOptions

Type: character vector

Value: 'Custom' | 'Debug' | 'Release’

Default: 'Custom’

Recommended Settings

Application Setting

Debugging Custom or Debug
Traceability Custom, Debug, Release
Efficiency Release

Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Compiler options string

To determine the degree of optimization provided by the optimizing compiler, enter the
optimization level to apply to files in your project. For details about the compiler options,
refer to your IDE documentation. When you create new projects, the code generator does

not set optimization flags.
Settings
Default: No default

Tips

* Use spaces between options.

Verify that the options are valid. The software does not validate the option string.

+ Setting Configuration to Custom applies the Custom compiler options defined by
the code generator. Custom does not use optimizations.

+ Setting Configuration to Debug applies the debug settings defined by the IDE.
+ Setting Configuration to Release applies the release settings defined by the IDE.

11-37

11 Configuration Parameters for Simulink Models

11-38

Command-Line Information

Parameter: compilerOptionsStr
Type: character vector

Value: 'Custom' | 'Debug' | 'Release’
Default: 'Custom’

Recommended Settings

Application Setting
Debugging Custom
Traceability Custom
Efficiency No impact
Safety precaution No impact
See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Linker options string

To specify the options provided by the linker during link time, you enter the linker
options as a string. For details about the linker options, refer to your IDE documentation.
When you create new projects, the code generator does not set linker options.

Settings
Default: No default
Tips

* Use spaces between options.

+ Verify that the options are valid. The software does not validate the options string.
Dependencies
Setting Build action to Archive library removes this parameter.

Command-Line Information
Parameter: 1inkerOptionsStr
Type: character vector

Code Generation: Coder Target Pane

Value: valid linker option
Default: none

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

System stack size (MAUs)

Enter the amount of memory that is available for allocating stack data. Block output
buffers are placed on the stack until the stack memory is fully allocated. After that, the
output buffers go in global memory.

This parameter is used in targets to allocate the stack size for the generated application.
For example, with embedded processors that are not running an operating system, this
parameter determines the total stack space that can be used for the application. For
operating systems such as Linux or Windows , this value specifies the stack space
allocated per thread.

This parameter also affects the “Maximum stack size (bytes)” (Simulink) parameter,
located in the Optimization > Signals and Parameters pane.

Settings

Default: 8192

Minimum: 0

Maximum: Available memory

+ Enter the stack size in minimum addressable units (MAUs). An MAU is typically 1
byte, but its size can vary by target processor.

11-39

11 Configuration Parameters for Simulink Models

11-40

* The software does not verify the value you entered is valid.
Dependencies
Setting Build action to Archive library removes this parameter.

When you set the System target file parameter on the Code Generation pane to
idelink ert.tlcor idelink grt.tlc, the software sets the Maximum stack size
parameter on the Optimization > Signals and Parameters pane to Tnherit from
target and makes it non-editable. In that case, the Maximum stack size parameter

compares the value of (System stack size/2) with 200,000 bytes and uses the smaller of
the two values.

Command-Line Information
Parameter: systemStackSize
Type: int

Default: 8192

Recommended Settings

Application Setting
Debugging int
Traceability int
Efficiency int

Safety precaution No impact
See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Profile real-time execution

Enables real-time execution profiling in the generated code by adding instrumentation
for task functions or atomic subsystems.

Settings

Default: Off

Code Generation: Coder Target Pane

¥ on

Adds instrumentation to the generated code to support execution profiling and
generate the profiling report.

O off

Does not instrument the generated code to produce the profile report.

Dependencies
This parameter adds Number of profiling samples to collect and Profile by.

Selecting this parameter enables Export IDE link handle to base workspace and
makes it non-editable, since the code generator must create a handle.

Setting Build action to Archive libraryor Create processor in the loop
project removes this parameter.

Command-Line Information
Parameter: ProfileGenCode
Type: character vector

Value: 'on' | 'off"

Default: 'off"

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact
See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

For more information about using profiling, refer to the “profile” and “Profiling Code
Execution in Real-Time” topics..

11-41

11 Configuration Parameters for Simulink Models

Profile by

Defines which execution profiling technique to use.
Settings
Default: Task

Task

Profiles model execution by the tasks in the model.

Atomic subsystem

Profiles model execution by the atomic subsystems in the model.

Dependencies

Selecting Real-time execution profiling enables this parameter.

Command-Line Information
Parameter: profileBy

Type: character vector

Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

For more information about PIL and its uses, refer to the “Verifying Generated Code via
Processor-in-the-Loop” topic.

For more information about using profiling, refer to the “profile” and “Profiling Code
Execution in Real-Time” topics.

11-42

Code Generation: Coder Target Pane

Number of profiling samples to collect

Specify the size of the buffer that holds the profiling samples. Enter a value that is 2
times the number of profiling samples.

Each task or subsystem execution instance represents one profiling sample. Each sample
requires two memory locations, one for the start time and one for the end time.
Consequently, the size of the buffer is twice the number of samples.

Sample collection begins with the start of code execution and ends when the buffer is full.
The profiling data is held in a statically sited buffer on the target processor.

Settings

Default: 100

Minimum: 2

Maximum: Buffer capacity

Tips

+ Data collection stops when the buffer is full, but the application and processor
continue running.

+ Real-time task execution profiling works with hardware only. Simulators do not
support the profiling feature.

Dependencies
This parameter is enabled by Profile real-time execution.

Command-Line Information
Parameter:ProfileNumSamples
Type: int

Value: Positive integer

Default: 100

Recommended Settings
Application Setting

Debugging 100

11-43

11 Configuration Parameters for Simulink Models

11-44

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Maximum time allowed to build project (s)

Specifies how long, in seconds, the software waits for the project build process to return a
completion message.

Settings

Default: 1000
Minimum: 1
Maximum: No limit
Tips

* The build process continues even if MATLAB does not receive the completion message
in the allotted time.

+ This timeout value does not depend on the global timeout value in a IDE_Obj object
or the Maximum time allowed to complete IDE operation timeout value.

Dependency
This parameter is disabled when you set Build action to Create project.

Command-Line Information
Parameter:ideObjBuildTimeout
Type: int

Value: Integer greater than 0
Default: 100

Code Generation: Coder Target Pane

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Maximum time allowed to complete IDE operation (s)

specifies how long, in seconds, the software waits for IDE functions, such as read or
write, to return completion messages.

Settings

Default: 10
Minimum: 1
Maximum: No limit
Tips

* The IDE operation continues even if MATLAB does not receive the message in the
allotted time.

+ This timeout value does not depend on the global timeout value in a IDE_0Obj object
or the Maximum time allowed to build project (s) timeout value

Command-Line Information
Parameter:' ideObjTimeout"
Type: int

Value:

Default: 10

11-45

11 Configuration Parameters for Simulink Models

11-46

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Export IDE link handle to base workspace

Directs the software to export the IDE_Ob3j object to your MATLAB workspace.

Settings

Default: On

41 On

Directs the build process to export the IDE Obj object created to your MATLAB
workspace. The new object appears in the workspace browser. Selecting this option

enables the IDE link handle name option.

Off

prevents the build process from exporting the IDE_Ob7 object to your MATLAB

software workspace.

Dependency

Selecting Profile real-time execution enables Export IDE link handle to base
workspace and makes it non-editable, since the code generator must create a handle.

Selecting Export IDE link handle to base workspace enables IDE link handle

name.

Command-Line Information
Parameter: export IDEOD]

Code Generation: Coder Target Pane

Type: character vector
Value: 'on' | 'off’
Default: 'on’

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

IDE link handle name

specifies the name of the IDE_Obj object that the build process creates.

Settings

Default: IDE Obj

+ Enter a valid C variable name, without spaces.

* The name you use here appears in the MATLAB workspace browser to identify the

IDE Obj object.

*+ The handle name is case sensitive.

Dependency

This parameter is enabled by Export IDE link handle to base workspace.

Command-Line Information
Parameter: ideObjName

Type: character vector
Value:
Default: IDE_Obj

11-47

11 Configuration Parameters for Simulink Models

11-48

Recommended Settings

Application Setting

Debugging Enter a valid C program variable name, without
spaces

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Source file replacement

Selects the diagnostic action to take if the code generator detects conflicts that you are
replacing source code with custom code.

Settings
Default: warn

none
Does not generate warnings or errors when it finds conflicts.
warning
Displays a warning.
error

Terminates the build process and displays an error message that identifies which file
has the problem and suggests how to resolve it.

Tips
* The build operation continues if you select warning and the software detects custom

code replacement. You see warning messages as the build progresses.

* Select error the first time you build your project after you specify custom code to use.
The error messages can help you diagnose problems with your custom code
replacement files.

Code Generation: Coder Target Pane

* Select none when you do not want to see multiple messages during your build.

* The messages apply to code generator Custom Code replacement options as well.

Command-Line Information
Parameter: DiagnosticActions
Type: character vector

Value: none | warning | error
Default: warning

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency warning
Safety precaution error

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

11-49

11 Configuration Parameters for Simulink Models

Hardware Implementation Pane

11-50

&} Configuration Parameters: freedomboard_RGB_LED/Configuration (Active) [E=Ecl ===
+* Commonly Used Parameters | = All Parameters ‘
Selecty Hardware board: |NXP FROM-KL25Z -
Solver
Data Import/Export Code Generation system target file: ert.tic
» Optimization . =
> Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing
Simulation Target Hardware board settings
» Code Generation
> Coverage Target Hardware Resources b
» HDL Code Generation N) . —
Groups Build action:
Build options
Clocking
12C0
12C1 £
Timer/PWM
UARTO
UART1
UART2 N
PIL -
J OK] [Cancel I [Help Apply

In this section...

“Code Generation Pane” on page 11-50

“Scheduler options” on page 11-51

“Build Options” on page 11-51

“Clocking” on page 11-52
“I2C0 and 12C1” on page 11-53
“Timer/PWM” on page 11-54
“UARTO, UART1, and UART2” on page 11-55
“PIL” on page 11-57

“External mode” on page 11-58

Code Generation Pane

Select the system target file and the toolchain for your hardware.

Hardware Implementation Pane

Scheduler options

Scheduler interrupt source

Select the source of the scheduler interrupt.

Build Options

%} Configuration Parameters: freedomboard_RGB_LED/Configuration (Active) = e e
-
+* Commonly Used Parameters | = All Parameters ‘
Select: Hardware board: |NXP FRDM-KL25Z -
Solver
Data Import/Export Code Generation system target file: ert.tic
> Optimization £
» Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing
Simulation Target Hardware board settings
» Code Generation
> Coverage Target Hardware Resources i
» HDL Code Generation
Groups * | Build action:
Build options
Clocking
12C0
12C1 £
Timer/PWM
UARTO
UART1
UART2 N
PIL -
_\) [oK] [Cancel] [Help] Apply

To specify how the build process takes place during code generation, select build options.

Build action

Specify whether you want only a build action or build, load, and run actions during
code generation.

Default: Build, load and run

* Build — Select this option if you want to build the code during the build process.

* Build, load and run — Select this option to build, load, and run the
generated code during the build process.

11-51

11 Configuration Parameters for Simulink Models

Clocking

@ c g freedomboard_RGB_LED/Configuration (Active) E@
+* Commonly Used Parameters = All Parameters ‘ Tl
Select: Hardware board: |NXP FROM-KL25Z -
Solver
Data Import/Export Code Generation system target file: ert.tic
» Optimization = E
> Diagnostics Device vendor: ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing
Simulation Target Hardware board settings
» Code Generation
» Coverage Target Hardware Resources | 4
» HDL Code Generation A
Groups CPU Clock (MHz): |48
Clocking —
12C0
12C1
Timer/PWM
UARTO £
UART1
UART2
PIL
External mode)
J OK] [Cancel I [Help Apply

CPU Clock (MHz)

This option is for the CPU clock frequency of the FRDM-KI.25Z processor on the
target hardware.

Note This parameter appears dimmed. The value of this parameter is set to 48 MHz.

11-52

Hardware Implementation Pane

12C0 and 12C1

mn

& Config domboard RGB_LED/Config (Active) [E=Ecl ===
+* Commonly Used Parameters | = All Parameters ‘
Select: Hardware board: |NXP FROM-KL25Z -
Solver
Data Import/Export Code Generation system target file: ert.tic
» Optimization =
> Diagnostics Device vendor: ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing
Simulation Target Hardware board settings
» Code Generation
» Coverage Target Hardware Resources
» HDL Code Generation Groups | seL pin:
Clocking
2c0 SDA Pin: [PTB1 =
12C1
Timer/PWM
UARTO £
UART1
UART2
PIL
External mode)
J OK] [Cancel I [Help Apply

SCL Pin

Select an SCL pin for I2C communication.

12Co0

Default: PTBO

PTBO, PTB2, PTC8, PTE24
12C1

Default: PTE1

PTE1l, PTCl, PTC10

SDA Pin

Select an SDA pin for I2C communication.

12C0

Default: PTB1

11-53

11 Configuration Parameters for Simulink Models

PTB1, PTB3, PTC9, PTE25
I12C1
Default: PTEO

PTEO, PTC2, PTCll, PTA4

Timer/PWM

L‘.’}; Configuration Parameters: freedomboard_RGB_LED/Configuration (Active) E@
% Commonly Used Parameters | = All Parameters ‘
Select: Hardware board: |NXP FRDM-KL25Z -
Solver
Data Import/Export Code Generation system target file: ert.tlc
» Optimization E
> Diagnostics Device vendor: | ARM Compatible Device type: |ARM Cortex
Hardware Implementation » Device details
Model Referencing
Simulation Target Hardware board settings
» Code Generation
» Coverage Target Hardware Resources |
» HDL Code Generation A
Groups TPMO Frequency (in Hz): 4166
Clocking
12C0 TPM1 Frequency (in Hz): 50
}lerll:';r,fPWM TPM2 Frequency (in Hz): 4166
UARTO £
UART1
UART2
PIL
External mode i
J OK] [Cancel] l Help Apply

TPMO Frequency (in Hz)
Specify the frequency for the TPMO timer.

Default: 4166 Hz
TPM1 Frequency (in Hz)
Specify the frequency for the TPM1 timer.

Default: 50 Hz
TPM2 Frequency (in Hz)
Specify the frequency for the TPM2 timer.

11-54

Hardware Implementation Pane

Default: 4166 Hz

UARTO, UART1, and UART2

\2 Cenfiguration Parameters: freedomboard RGB_LED/Configuration (Active)

[E=E Bl =4

Device type: | ARM Cortex

Tx Pin: |PTA2 (USBTX) ~
Rx Pin: |PTAL (USBRX) ~

Baud rate (in bits/s): 115200

mn

View Pin Map

+* Commenly Used Parameters | = All Parameters ‘
Select: Hardware board: [NXP FRDM-KL25Z
Solver
Data Import/Export Code Generation system target file: ert.tic
» Optimization -
» Diagnostics Device vendor: | ARM Compatible
Hardware Implementation » Device details
Model Referencing
Simulation Target Hardware board settings
» Code Generation
> Coverage Target Hardware Resources
» HDL Code Generation
Groups
Build options
Clocking
12C0
12C1
Timer/PWM
UARTO
UART1
UART2
PIL
Q@

OK

H Cancel ” Help Apply

Baud rate (in bits/s)
Specify the baud for UARTx serial interfaces.

Default: 115200
Tx Pin

Select a Tx pin for serial communication.

UARTO
Default: pTA2 (
PTA2 (USBTX),
UART1

Default: pTC4

USBTX)

PTE20,

PTD7,

No connection

11-55

11 Configuration Parameters for Simulink Models

PTC4, PTEO, No connection
UART?2
Default: PTD5

PTD5, PTE22, PTD3, No connection
Rx Pin

Select an Rx pin for serial communication.

UARTO

Default: PTA1 (USBRX)

PTA1l (USBRX), PTE21, PTD6, No connection
UART1

Default: pTC3

PTC3, PTEl, No connection

UART2

Default: PTD4

PTD4, PTE23, PTD2, No connection

11-56

Hardware Implementation Pane

PIL

% Configuration Parameters: freedomboard RGB_LED/Configuration (Active)

+* Commonly Used Parameters

= All Parameters ‘

E=8 Hom =)

Select:
Solver
Data Import/Export
‘Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
HDL Code Generation

]

Hardware board: [NXP FRDM-KL25Z

5

Code Generation system target file: ert.tic

Device vendor: | ARM Compatible
» Device details

Hardware board settings

Target Hardware Resources

Groups
Clocking
12C0
12C1
Timer/PWM
UARTO
UART1
UART2
PIL
External mode

m

*| select hardware UART: |UARTO ~

mn

Device type: |ARM Cortex

Serial port: COM1

OK H Cancel ” Help Apply

Select hardware UART

Select the target UART port for PIL communication. After selecting an UART port,
go to the selected UART in Configuration Parameters > Hardware
Implementation pane > UARTx and select the Tx and the Rx pins.

Default: UARTO

Serial port

Enter the serial port for PIL communication.

Default: com1

11-57

11 Configuration Parameters for Simulink Models

External mode

%} Configuration Parameters: freedomboard_RGB_LED/Configuration (Active) [E=n E=R ===
+* Commonly Used Parameters | = All Parameters ‘
Selecty Hardware board: [NXP FRDM-KL25Z -]
Solver
Data Import/Export Code Generation system target file: ert.tic
» Optimization = E
> Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing 3
Simulation Target Hardware board settings
» Code Generation
» Coverage Target Hardware Resources b
» HDL Code Generation
Groups *| communication interface:
Clocking
1200 Select hardware UART: |UARTO ~
12¢1 . .
Timer/PWM Serial port: COM27
UARTO = Verbose
UART1
UART2
PIL
External mode E
J OK] [Cancel I [Help Apply

Communication interface

Use the serial option to run your model in the external mode with serial
communication.

Default: serial

Select hardware UART

Select the target UART port for external mode communication. After selecting an
UART port, go to the selected UART in Configuration Parameters > Hardware
Implementation pane > UARTx and select the Tx and the Rx pins.

Default: UARTO

Note The target UARTO port for external mode communication works only in
Windows and Mac OS X El Capitan operating systems.

Serial port
Enter the serial port for external mode communication.

11-58

Hardware Implementation Pane

Default: com27
Verbose

Select this check box to view the external mode execution progress and updates in
the Diagnostic Viewer or in the MATLAB Command Window.

11-59

11 Configuration Parameters for Simulink Models

Hardware Implementation Pane

11-60

In this section...

“Hardware Implementation Pane Overview” on page 11-60
“Build options” on page 11-62

“Clocking” on page 11-63

“DAC” on page 11-64

“UARTO, UART1, UARTZ2, and UARTS3” on page 11-65
“Ethernet” on page 11-67

“External mode” on page 11-70

Hardware Implementation Pane Overview
Specify the options for creating and running applications on target hardware.
Configuration

Configure hardware board to run Simulink model.

1 In the Simulink Editor, select Simulation > Model Configuration Parameters.

2 In the Configuration Parameter dialog box, click Hardware Implementation.

Hardware Implementation Pane

e ion P i on Hardware Ci jon (Active) [E=nE=R ===
% Commonly Used Parameters | = All Parameters | 7
Sclect Hardware board: [NXP FRDM-K64F -
Solver
Data Import/Export Code Generation system target file: ert.tic
> Optimization) - . -) - .
» Diagnostics Device vendor: | ARM Compatible Device type: |ARM Cortex
Hardware Implementation » Device details 3
Model Referencing
Simulation Target Hardware board settings
> Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups Build action:
Build options
Clacking Firmware: | mbed's CMSIS-DAP firmware (Default) R
DaC Chanqe firmware options
UARTO
UART1
UARTZ2
UART3
Ethernet
External mode
\)- [OK] [Cancel I [Help] [Apply I

3 Set the Hardware board parameter to match your target hardware board.

4 Apply the changes.

Base rate task priority

The value in this parameter defines the priority of the base rate task.

11-61

11 Configuration Parameters for Simulink Models

11-62

Build options

%} Configuration Parameters: untitled/Run on Hardware Configuration (Active) [E=nE=h ===
% Commonly Used Parameters | = All Parameters |
Selecty Hardware board: [NXP FRDM-K64F -]
Solver
Data Import/Export Code Generation system target file: ert.tlc
> Optimization - - - - -
. Diagnostics Device vendor: | ARM Compatible Device typs: |ARM Cortex
Hardware Implementation » Device details E
Model Referencing
Simulation Target Hardware board settings
» Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups Build action:
Build options
Clacking Firmware: | mbed's CMSIS-DAP firmware (Default) i
DAC Change firmware options
UARTOD
UART1
UART2
UART3
Ethernet
External mode
\) [OK I [Cancel] [Help I [Apply]

To specify how the build process takes place during code generation, select build options.

Build action

Specify whether you want only a build action or build, load, and run actions during
code generation.

Default: Build, load and run

* Build— Select this option if you want to build the code during the build process.

* Build, load and run — Select this option to build, load, and run the
generated code during the build process.

Firmware

This is the firmware chosen during the setup to run your model on the FRDM-K64F
board.

Hardware Implementation Pane

Clocking

12} Configuration Parameters: untitled/Run on Hardware Configuration (Active)

% Commonly Used Parameters

= All Parameters |

E=3 Eol

Select:
Solver
Data Import/Export
‘Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
HDL Code Generation

]

Hardware board: [NXP FRDM-K64F

)

Code Generation system target file: ert.tlc
Device vendor: | ARM Compatible
» Device details

Hardware board settings

Target Hardware Resources

Groups
Build options
Clocking
DAC
UARTOD
UART1
UART2
UART3
Ethernet
External mode

Device type: |ARM Cortex

CPU Clock (MHz): | 120

mn

OK

” Cancel H

Help

J [_ppiy

CPU Clock (MHz)
This option is for the CPU clock frequency of the FRDM-K64F processor on the target

hardware.

Note This parameter appears dimmed. The value of this parameter is set to 120

MHz.

11-63

11 Configuration Parameters for Simulink Models

11-64

DAC

12} Configuration Parameters: untitled/Run on Hardware Configuration (Active)

% Commonly Used Parameters

= All Parameters |

E=3 Eol

Select:
Solver
Data Import/Export
‘Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
HDL Code Generation

]

Hardware board: [NXP FRDM-K64F

)

Code Generation system target file: ert.tlc

Device vendor: | ARM Compatible
» Device details

Hardware board settings

Target Hardware Resources

Groups
Build options
Clocking
DAC
UARTOD
UART1
UART2
UART3
Ethernet
External mode

Device type: |ARM Cortex

DACO reference voltage: |[DACREF 1 -

mn

OK ” Cancel H

Help

J [_ppiy

DACO reference voltage

This option is for the reference voltage of the DAC that you select.

Default: DACREF 1

DACREF 2

Hardware Implementation Pane

UARTO, UART1, UARTZ2, and UART3

'} Configuration Parameters: untitled/Run on Hardware Configuration [Active) == E=n ="
% Commonly Used Parameters | = All Parameters | r
Select: Hardware board: [NXP FRDM-K64F -
Solver
Data Import/Export Code Generation system target file: ert.tlc
> Optimization - - 5 = =
. Diagnostics Device vendor: | ARM Compatible Device typs: |ARM Cortex
Hardware Implementation » Device details £
Model Referencing
Simulation Target Hardware board settings
» Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups Baud rate (in bits/s): 115200
Build options
Clocking Ten: [PB17 (UsBnY v [View pin Hap -
DAC _
UARTO Roc Pin:
UART1 ity
UART2 Farty:
UART3 Stop bits:
Ethernet
External mode
Q OK I [Cancel] [Help I [Apply

Baud rate (in bits/s)
Specify the baud for UARTx serial interfaces.

Default: 115200
Tx Pin
Specify a transmitting pin of UARTx.

UARTO

Default: PTB17 (USBTX)

PTA2 (D5), PTD7, No connection
UART1

Default: PTC4 (D9)

11-65

11 Configuration Parameters for Simulink Models

No connection
UART2

Default: PTD3 (D12)
No connection
UART3

Default: PTC17 (D1)

PTB11 (A3), No connection
Rx Pin
Specify a receiving pin of UARTx.

UARTO

Default: PTB16 (USBRX)
PTA1 (D3), PTD6, No connection
UART1

Default: pTC3 (D7)

No connection
UART2

Default: PTD2 (D11)

No connection
UART3

Default: PTC16 (DO)

PTB10 (A2), No connection
Parity

Select the type of parity checking for serial communication. This option determines
whether the UARTx generates and checks for even parity or odd parity.

11-66

Hardware Implementation Pane

Default: None

Even, 0Odd

* None — No parity checking

+ Even — Even parity checking
+ 0dd — Odd parity checking

Stop bits

Select the number of Stop bits used to indicate end of a packet.

Default: 1

2

* 1 — One stop bit is transmitted to indicate the end of a byte.

* 2 — Two stop bits are transmitted to indicate the end of a byte.

Ethernet

1} Configuration Parameters: untitled/Run on Hardware Configuration (Active)

% Commonly Used Parameters

= All Parameters |

E=N E=R =

Select:

Solver
Data Import/Export

> Optimization

> Diagnostics
Hardware Implementation
Model Referencing
Simulation Target

» Code Generation

> Coverage

> HDL Code Generation

Hardware board: [NXP FRDM-K64F -]

Code Generation system target file: ert.tic
Device vendor: | ARM Compatible Device typa: |ARM Cortex
» Device details

Hardware board settings

Target Hardware Resources

Groups Ethernet host name: FRDM_K64F
Build options
Clocking
DAC
UARTOD
UART1 Board IP address: 192.168.1.102
UART2
UART3 Subnet mask: 255.255.255.0
Ethernet
External mode

MAC address: 00-CF-52-35-00-01

[”] Enable DHCP for IP address assignment

Gateway: 192.168.1.1

(]

OK ” Cancel H Help

J [_pply

11-67

11 Configuration Parameters for Simulink Models

Ethernet host name

Specify the local host name. The local host is the board running the model.

Default: FRDM K64F

MAC address
Specify the Media Access Control (MAC) address, the physical network address of the
board.

Under most circumstances, you do not need to change the MAC address. If you
connect more than one board to a single computer so that each address is unique,
change the MAC address. (You must have a separate network interface card (NIC)
for each board.)

To change the MAC address, specify an address that is different from the address
that belongs to any other device attached to your computer. To obtain the MAC
address for a specific board, refer to the label affixed to the board or consult the
product documentation.

The MAC address must be in the six octet format. For example, DE-AD-BE-EF-FE-
ED
Default: 00-CF-52-35-00-01

Enable DHCP for local IP address assignment
Select this check box to configure the board to get an IP address from the local DHCP
server on the network.

Default: of f

on

Board IP address

Use this option for setting the IP address of the board. Change the IP address of your
computer to a different subnet when you set up the network adapter. You would need
to change the address if the default board IP address is in use by another device.

If so, change the board IP address according to these guidelines:

* The subnet address, typically the first 3 bytes of the board IP address, must be
the same as those of the host TP address.

11-68

Hardware Implementation Pane

* The last byte of the board IP address must be different from the last byte of the
host IP address.

* The board IP address must not conflict with the IP addresses of other computers.
For example, if the host IP addressis 192.168.8.2, then you can use
192.168.8. 3, if available.

Default: 192.168.1.102

Subnet mask

Specify the subnet mask for the board. The subnet mask is a mask that designates a

logical subdivision of a network.

The value of the subnet mask must be the same for all devices on the network.

Default: 255.255.255.0

* 1 — One stop bit is transmitted to indicate the end of a byte.

* 2 — Two stop bits are transmitted to indicate the end of a byte.

Gateway

Set the serial gateway to the gateway required to access the target computer.

For example, when you set this parameter to 255.255.255.255, it means that you
do not use a gateway to connect to your target computer. If you connect your
computers with a crossover cable, leave this property as 255.255.255.255.

If you communicate with the target computer from within your LAN, you do not need
not change this setting.

If you communicate from a host located in a LAN different from your target computer
(especially via the Internet), you must define a gateway and specify its IP address in

this parameter.

Default: 192.168.1.1

11-69

11 Configuration Parameters for Simulink Models

External mode

4 Configuration Parameters: untitled/Run on Hardware Configuration (Active) [E=RE=R
% Commonly Used Parameters | = All Parameters |
Selecty Hardware board: [NXP FRDM-K64F -
Solver
Data Import/Export Code Generation system target file: ert.tlc
> Optimization - P N P
. Diagnostics Device vendor: | ARM Compatible Device typs: |ARM Cortex
Hardware Implementation » Device details 3
Model Referencing X
Simulation Target Hardware board settings
» Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups Communication interface:
Build options
C\ockin’;u [7] verbose -
DAC
UARTOD
UART1
UART2
UART3
Ethernet
External mode
\) OK I [Cancel] [Help I [Apply

Communication interface
Use the serial option to run your model in the external mode with serial

communication.
Default: Serial

Baudrate
Specify the baud for UARTx serial interfaces.

Default: 115200

Verbose

Select this check box to view the external mode execution progress and updates in
the Diagnostic Viewer or in the MATLAB Command Window.

11-70

Hardware Implementation Pane

Hardware Implementation Pane

Hardware Implementation Pane Overview

Specify the options for creating and running applications on target hardware.

1 In the Simulation Editor, select Simulation > Model Configuration Parameters.

Diagram Analg,rsis Code Tools Help

]| @ # Update Diagram Ctrl+D [
— © Model Configuration Parameters Ctrl+E
Mode 4
Data Display r

2 In the Configuration Parameters dialog box, click Hardware Implementation.

11-71

11 Configuration Parameters for Simulink Models

& Configuration Parameters: untitled/Configuration (Active) [E=3Ecl ===
* Commonly Used Parameters | = All Parameters ‘
I Scleat; Hardware board: [ARM Cortex-based VEX Microcontroller ']
Solver
Data Import/Export Code Generation system target file: ert.tic
> Optimization) - P— ; n cort
., Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing 3
Simulation Target Hardware board settings E
» Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups CPU Clock (MHz): | 168
Clocking
Build options
External mode
J l oK] [Cancel] l Help] [Apply

3 Select the Hardware board to match your VEX® board.
4 Set the target hardware resource parameters.
5 Click Apply.

Hardware board
Select the type of hardware upon which to run your model.

Changing this parameter updates the Configuration Parameters dialog, so it only
displays parameters that are relevant to your target hardware.

After installing support for your target hardware, reopen the Configuration Parameters
dialog and select your target hardware.

To run the model on your VEX device, select ARM Cortex-based VEX
Microcontroller.

11-72

Hardware Implementation Pane

Settings
Default: None

None

This setting means your model has not been configured to run on target hardware.
Choose your target hardware from the list of options.

Get more...

Select this option to start Support Package Installer and install support for
additional hardware.

Base rate task priority

Base rate task priority

This parameter sets the static priority of the base rate task. By default, the priority
1s 40.

11-73

11 Configuration Parameters for Simulink Models

Clocking

e untitled/C ion (Active) == E=R =)
* Commonly Used Parameters = All Parameters ‘ 7
‘ Sclecty Hardware board: [ARM Cortex-based VEX Microcontroller 'l

Solver
Data Import/Export Code Generation system target file: ert.tic

» Optimization = = i Cort

> Diagnostics Device vendor: | ARM Compatible ~ | Davice type: | ARM Cortex e
Hardware Implementation » Device details

Model Referencing
Simulation Target
Code Generation

m

Hardware board settings

» Coverage Target Hardware Resources
» HDL Code Generation
Groups CPU Clock (MHz): | 168
Clocking
Build options

External mode

J OK][Cancel H Help][Apply]

CPU Clock (MHz)
This is the CPU clock rate.

11-74

Hardware Implementation Pane

Build options

@ ¢ untitled/C on (Active) =8l ===
* Commonly Used Parameters | = All Parameters ‘ 7
‘ Sclecty Hardware board: [ARM Cortex-based VEX Microcontroller 'I
Solver
Data Import/Export Code Generation system target file: ert.tic
» Optimization . - - : B cart
> Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing .
Simulation Target Hardware board settings £
» Code Generation
> Coverage Target Hardware Resources
» HDL Code Generation
Groups Build action: |Build, load, and run ~
Clocking
Build options
External mode
J OK] [Cancel] l Help] [Apply]

Build action
This is the option to specify, if you want only build action, or build, load and run
actions during code generation.

* Build, load and run — Select this option to build, load, and to run the
generated code.
* Build— Select this option to only build the code.

11-75

11 Configuration Parameters for Simulink Models

11-76

External mode

& Configuration Parameters: untitled/Configuration (Active) [-E]
* Commonly Used Parameters | = All Parameters ‘
‘ Seled; Hardware board: [ARM Cortex-based VEX Microcontroller 'I
Solver
Data Import/Export Code Generation system target file: ert.tic
> Optimization . - - : B ot
. Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing .
Simulation Target Hardware board settings E
» Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups Communication interface:
Clocking -
Build options Set host COM port: |Automatically -
External mode Verbose
J OK] [Cancel] l Help] [Apply]

Communication interface

The ‘serial’ option uses serial communication for external mode.

Set host COM port

* Automatically — Select this option to set the host COM port automatically.

This is the default option.

* Manually — Select this option to manually set the host COM port.

COMPort

Enter the COMPort used by the target hardware. This parameter appears, only if
you have selected Manually option in the Set host COM port parameter.

Hardware Implementation Pane

Verbose

Select this check box to view the External Mode execution progress and updates in
the Diagnostic Viewer or in the MATLAB command window.

11-77

11 Configuration Parameters for Simulink Models

Hardware Implementation Pane

&} Configuration Parameters: untitled/Configuration (Active) [-E]
* Commonly Used Parameters | = All Parameters ‘
Sclecty Hardware board: [STM32 Nucleo F302R8 'l
Solver
Data Import/Export Code Generation system target file: ert.tic
> Optimization . P E ot
. Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details 3

Model Referencing
Simulation Target
» Code Generation
> Coverage

Hardware board settings

Target Hardware Resources

> HDL Code Generation
Groups Build action: | Build, load and run =
Build options
i Set host drive: .
2c] =
SPT Drive: F:
PIL
External mode
J OK I l Cancel] [Help I [Apply]

In this section...

“Hardware Implementation Pane Overview” on page 11-78
“Build options” on page 11-79

“Clocking” on page 11-80

“I2C” on page 11-81

“PIL” on page 11-82

“SPI” on page 11-83

“External mode” on page 11-84

Hardware Implementation Pane Overview

Configure the parameters for properties of the physical hardware, such as peripherals.

11-78

Hardware Implementation Pane

Build options

&} Configuration Parameters: untitled/Configuration (Active) [-E]
* Commonly Used Parameters | = All Parameters ‘
Sclecty Hardware board: [STM32 Nucleo F302R8 'l
Solver
Data Import/Export Code Generation system target file: ert.tic
> Optimization . P E ot
. Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details 3
Model Referencing .
Simulation Target Hardware board settings
» Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups Build action: |Build, load and run ~
Build options
; Set host drive: —
2c . L
SPT Drive: F:
PIL
External mode
J [OK I l Cancel] [Help I [Apply]

Use the build option to specify how the build process should take place during code
generation.

Build action

Specify if you want only build or build, load and run actions during code generation.

* Build - Select this option if you want to build the code during the build process.

* Build, load and run — Select this option to build, load, and to run the
generated code during the build process.

Set host drive

Select an option to copy the generated output bin file automatically or manually on a
drive.

Drive
Specify the drive letter on which you want to copy the generated output bin file.

11-79

11 Configuration Parameters for Simulink Models

Clocking

'} Configuration Parameters: untitled/Run on Hardware Configuration (Active) =8 E=B ==
* Commonly Used Parameters | = All Parameters ‘ B
Seled; Hardware board: [STMSZ Nucleo F401RE N
Solver
Data Import/Export Code Generation system target file: ert.tic
» Optimization - . - - .
> Diagnostics Device vendor: | ARM Compatible - | Device type: ARM Corfex >
Hardware Implementation » Device details
Model Referencing L
Simulation Target Hardware board settings =
» Code Generation
> Coverage Target Hardware Resources
» HDL Code Generation
Groups CPU Clock (MHz): |84
Build options
|Clocking
12C
SPT
PIL
External mode M
J [OK] l Cancel] [Help] l Apply

Use the clocking option to achieve the CPU Clock rate specified.

CPU Clock (MHz)
The CPU clock rate.

11-80

Hardware Implementation Pane

12C

1! Configuration Parameters: untitled/Run on Hardware Configuration (Active) =8 E=B ==
* Commonly Used Parameters | = All Parameters ‘ B
Seled; Hardware board: [STMSZ Nucleo F401RE N
Solver
Data Import/Export Code Generation system target file: ert.tic
» Optimization - . - - .
> Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing
Simulation Target Hardware board settings £
» Code Generation
> Coverage Target Hardware Resources
» HDL Code Generation
Groups Bus speed (in Hz): 100000
Build options
Clocking
12C
SPY
PI
External mode M
J [OK] l Cancel] [Help] l Apply]

Use the PIL options to set PIL (Processor-in-the-Loop) communications parameters.

Bus speed (in Hz)

Use the I12C option to set the bus speed parameter. The bus speed determines the
rate of data communication between the peripherals that are connected by the 12C

bus.

11-81

11 Configuration Parameters for Simulink Models

PIL

2! Configurati untitled! /Configuration (Active) [E=nE=h ===
% Commonly Used Parameters | = All Parameters | B
Seledt; Hardware board: [STMSZ Nucleo F401RE 'I
Solver
Data Import/Export Code Generation system target file: ert.tlc
» Optimization - - - - -
> Diagnostics Device vendor: | ARM Compatible Device typs: |ARM Cortex
Hardware Implementation » Device details E
Model Referencing
Simulation Target Hardware board settings
» Code Generation
> Coverage Target Hardware Resources
» HDL Code Generation
Groups PIL communication interface
Build options
Clacking Serial port: COM2 i
12C
SPT
PIL
External mode
Q [OK I [Cancel] [Help I [Apply]

Use the PIL options to set PIL (Processor-in-the-Loop) communications parameters.

PIL communication interface

The serial port used for PIL communication.

Serial port
Enter the serial port for PIL communication.

11-82

Hardware Implementation

Pane

SPI

& Configuration Parameters: untitled/Run on Hardware Configuration (Active) =N ol =
* Commonly Used Parameters | = All Parameters ‘
Sclecty Hardware board: [STMSZ Nucleo F401RE o
Solver
Data Import/Export Code Generation system target file: ert.tic
> Optimization ARM C ati A Cort:
. Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing . L
Simulation Target Hardware board settings 3
» Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups Bus speed (in Hz): 1000000
Build options
Clocking Master output slave input (MOSI) pin:
12 ; - -
SPT Master input slave output (MISO) pin:
PIL in:
Clock (SCK) pin: -13 ~ L4
External mode
J [OK] l Cancel] [Help] l Apply]

Use the PIL options to set PIL (Processor-in-the-Loop) communications parameters.

Bus speed (in Hz)

The serial port used for PIL communication.
Master output slave input (MOSI) pin

Specify the pin that connects the master output to the slave input.
Master input slave input (MISO) pin

Specify the pin that connects the slave output to the master input.
Clock (SCK) pin

Specify the clock pin for SPT communication.

11-83

11 Configuration Parameters for Simulink Models

External mode

4 Configuration Parameters: untitled/Run on Hardware Configuration (Active) =8 E=B ==
* Commonly Used Parameters | = All Parameters ‘
Seled; Hardware board: [STMSZ Nucleo F401RE N
Solver
Data Import/Export Code Generation system target file: ert.tic
> Optimization P— - - —
. Diagnostics Device vendor: | ARM Compatible Device type: | ARM Cortex
Hardware Implementation » Device details
Model Referencing . L
Simulation Target Hardware board settings £
» Code Generation
> Coverage Target Hardware Resources
> HDL Code Generation
Groups Communication interface:
Build options
Clacking Serial port: COM1
12¢ Werbase
SPT
PIL A
External mode
J [OK] l Cancel] [Help] l Apply

Communication interface
Use the ‘serial’ option to run your model in the External mode with serial
communication.

Serial port
Enter the serial port used by the target hardware.

Verbose

Select this check box to view the External Mode execution progress and updates in
the Diagnostic Viewer or in the MATLAB command window.

11-84

Recommended Settings Summary for Model Configuration Parameters

Recommended Settings Summary for Model Configuration
Parameters

The following table summarizes the impact of each configuration parameter on
debugging, traceability, efficiency, and safety considerations, and indicates the factory
default configuration settings for the GRT and ERT targets, unless otherwise specified.

For parameters that are available only when an ERT target is specified, see
“Recommended Settings Summary for Model Configuration Parameters” (Embedded
Coder).

For additional details, click the links in the Configuration Parameter column.

11-85

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Solver Pane

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution
compexcep="155" [No impact |Noimpact [No impact |0.0 0.0 seconds
Start time”
(Simulink)
“Stop time” No impact |Noimpact |No impact |A positive 10.0 seconds
(Simulink) value
“Type” (Simulink) |Fixed-step|Fixed-step |Fixed- Fixed-step |Variable-step
step (you must change to
Fixed-step for
code generation)
“Solver” No impact |Noimpact |[Noimpact |Discrete ode3 (Bogacki-
(Simulink) (no Shampine)
continuous
states)
“Periodic sample |[Noimpact |[Noimpact |Noimpact |Specified |Unconstrained
time constraint” or Ensure
(Simulink) sample
time
independen
t
“Sample time No impact |Noimpact |No impact |Period, offset, |'"'

properties”
(Simulink)

and priority
of each
sample time
in the model;
faster sample
times must
have higher
priority than
slower
sample times

11-86

Recommended Settings Summary for Model Configuration Parameters

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution

“Treat each Noimpact |Noimpact [Noimpact |No impact On
discrete rate as a
separate task”
(Simulink)
“Automatically No impact |Noimpact |[No impact |Off Off
handle rate (for
transition for data simulation
transfer” and during
(Simulink) development

)

Off (for

production

code

generation)

11-87

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Data Import/Export Pane

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution

“Input” (Simulink) [No impact |No impact No No Off
recommen |recommendati
dation on

“Initial state” No impact |[No impact No No Off

(Simulink) recommen |recommendati
dation on

“Time” (Simulink) [No impact |No impact No No On
recommen |recommendati
dation on

“States” No impact |No impact No No Off

(Simulink) recommen |recommendati
dation on

“Output” No impact |No impact No No On

(Simulink) recommen |recommendati
dation on

“Final states” No impact |[No impact No No Off

(Simulink) recommen |recommendati
dation on

“Signal logging” |Noimpact [No impact No No On

(Simulink) recommen |recommendati
dation on

“Record logged No impact |No impact No No Off

workspace data in recommen |recommendati

Simulation Data dation on

Inspector”

(Simulink)

“Limit data No impact |No impact No No On

points” (Simulink) recommen |recommendati
dation on

11-88

Recommended Settings Summary for Model Configuration Parameters

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution

“Decimation” No impact |No impact No No 1
(Simulink) recommen |recommendati

dation on
“Format” No impact |[No impact No No Array
(Simulink) recommen |recommendati

dation on
“Output options” |No impact [No impact No No Refine output
(Simulink) recommen |recommendati

dation on
“Refine factor” No impact |No impact No No 1
(Simulink) recommen |recommendati

dation on
“Output times” No impact |No impact No No '
(Simulink) recommen |recommendati

dation on

11-89

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Optimization Pane: General Tab

Configuration Settings for Building Code Factory Default
PR Debugging | Traceability | Effici Safet
gging raceability iciency afety
precaution

“Default for No impact |Noimpact [single No impact double
underspecified
data type”
(Simulink)
“Use division for |Noimpact |Noimpact |[On (when |No impact off
fixed-point net target
slope hardware
computation” supports
(Simulink) efficient

division)

Off

(otherwise)
“Application No impact |Noimpact |Finite inf auto
lifespan (days)” value
(Simulink)
“Use floating- No impact |Noimpact |On (when |No Off
point target recommendat
multiplication to hardware |ion
handle net slope supports
corrections” efficient
(Simulink) multiplicati

on)

Off

(otherwise)
“Remove code Off Off On No Off
from floating- (execution, |recommendat
point to integer ROM) ion
conversions that
wraps out-of- No impact
range values” (RAM)

(Simulink)

11-90

Recommended Settings Summary for Model Configuration Parameters

Configuration
Parameter

Settings for Building Code

Debugging

Traceability

Efficiency

Safety
precaution

Factory Default

*The command-line value is reverse of the listed value.

Mapping Application Requirements to the Optimization Pane: Signals and Parameters Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution
“Default Tunable Inlined Inlined |No impact Tunable (GRT)
parameter (GRT)
behavior” Inlined (ERT)
(Simulink) Inlined
(ERT)

“Loop unrolling No impact |Noimpact [>0 No impact 5
threshold”
(Simulink)
“Maximum stack |Noimpact [Noimpact [Noimpact |No impact Inherit from
size (bytes)” target
(Simulink)
“Use memcpy for [Noimpact |Noimpact |On No impact On
vector
assignment”
(Simulink)
“Memcpy No impact |Noimpact |Accept No impact 64
threshold (bytes)” default or
(Simulink) determine

target-

specific

optimal

value
“Inline invariant |Off Off On No impact Off

signals”
(Simulink)

11-91

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Optimization Pane: Stateflow Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution

“Use bitsets for Off Off Off No impact Off
storing state (execution,
configuration” ROM)
(Simulink)

On (RAM)
“Use bitsets for Off Off Off No impact Off
storing Boolean (execution,
data” (Simulink) ROM)

On (RAM)

11-92

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Diagnostics Pane: Solver Tab

Configuration
Parameter

Settings for Building Code

Debugging

Traceability

Efficiency

Safety
precaution

Factory Default

“Algebraic loop”
(Simulink)

error

No impact

No impact

error

warning

“Minimize
algebraic loop”
(Simulink)

No impact

No impact

No impact

error

warning

“Block priority
violation”
(Simulink)

No impact

No impact

No impact

error

warning

“Consecutive zero-
crossings
violation”
(Simulink)

No impact

No impact

No impact

warning or
error

error

“Unspecified
inheritability of
sample time”
(Simulink)

No impact

No impact

No impact

error

warning

“Solver data
inconsistency”
(Simulink)

warning

No impact

none

No impact

warning

“Automatic solver
parameter
selection”
(Simulink)

No impact

No impact

No impact

error

warning

11-93

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Diagnostics Pane: Sample Time Tab

Configuration Settings for Building Code Factory Default
Parameter

Debugging |Traceability |Efficiency |Safety
precaution

“Source block No impact |Noimpact |[Noimpact |error none
specifies -1 sample
time” (Simulink)

“Multitask rate No impact |Noimpact [Noimpact |error error
transition”
(Simulink)

“Single task rate |[Noimpact |[Noimpact |Noimpact |none or none
transition” error
(Simulink)

“Multitask Noimpact |Noimpact |[Noimpact |error error
conditionally
executed
subsystem”
(Simulink)

“Tasks with equal [Noimpact [Noimpact |Noimpact |none or warning
priority” error

(Simulink)

“Enforce sample |Noimpact |Noimpact |Noimpact |error warning
times specified by
Signal
Specification
blocks” (Simulink)

11-94

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Diagnostics Pane: Data Validity Tab

Configuration
Parameter

Settings for Building Code

Debugging

Traceability

Efficiency

Safety
precaution

Factory Default

“Signal
resolution”
(Simulink)

No impact

No impact

No impact

Explicit
only

Explicit only

“Division by
singular matrix”
(Simulink)

No impact

No impact

No impact

error

none

“Underspecified
data types”
(Simulink)

No impact

No impact

No impact

error

none

“Simulation range
checking”
(Simulink)

warning or
error

warning or
error

none

error

none

“Wrap on
overflow”

(Simulink)

No impact

No impact

No impact

error

warning

“Saturate on
overflow”

(Simulink)

No impact

No impact

No impact

error

warning

“Inf or NaN block
output” (Simulink)

No impact

No impact

No impact

error

none

(51)

rt" prefix for
identifiers”
(Simulink)

No impact

No impact

No impact

error

error

“Detect downcast”
(Simulink)

No impact

No impact

No impact

error

error

“Detect overflow”
(Simulink)

No impact

No impact

No impact

error

error

“Detect
underflow”
(Simulink)

No impact

No impact

No impact

error

none

11-95

11 Configuration Parameters for Simulink Models

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution

“Detect precision |[Noimpact [Noimpact |Noimpact |error error
loss” (Simulink)
“Detect loss of No impact |Noimpact |No impact |error warning for GRT-
tunability” based targets
(Simulink)

error for ERT-

based targets
“Detect read Noimpact |Noimpact |[Noimpact |error Enable all as
before write” warnings
(Simulink)
“Detect write after [No impact [Noimpact |Noimpact |error Enable all as
read” (Simulink) warning
“Detect write after [No impact [Noimpact |Noimpact |error Enable all as
write” (Simulink) errors
“Multitask data Noimpact |Noimpact [Noimpact |error warning
store” (Simulink)
“Duplicate data warning No impact |none No impact none
store names”
(Simulink)
“Check undefined |Noimpact |Noimpact |Noimpact [On On
subsystem initial
output” (Simulink)
“Check runtime No impact |[Noimpact [Noimpact |On Off
output of
execution context”
(Simulink)

11-96

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Diagnostics Pane: Type Conversion Tab

Configuration Settings for Building Code Factory Default
Parameter

Debugging |Traceability |Efficiency |Safety
precaution

“Unnecessary type |No impact |Noimpact |Noimpact [warning none
conversions”

(Simulink)

“Vector/matrix No impact |Noimpact [Noimpact |error none
block input
conversion”
(Simulink)

“32-bit integer to |[Noimpact |[Noimpact |Noimpact |warning warning
single precision
float conversion”
(Simulink)

11-97

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Diagnostics Pane: Connectivity Tab

Configuration
Parameter

Settings for Building Code

Debugging

Traceability

Efficiency

Safety
precaution

Factory Default

“Signal label
mismatch”
(Simulink)

No impact

No impact

No impact

error

none

“Unconnected
block input ports”
(Simulink)

No impact

No impact

No impact

error

warning

“Unconnected
block output
ports” (Simulink)

No impact

No impact

No impact

error

warning

“Unconnected
line” (Simulink)

No impact

No impact

No impact

error

none

“Unspecified bus
object at root
Outport block”
(Simulink)

No impact

No impact

No impact

error

warning

“Element name
mismatch”
(Simulink)

No impact

No impact

No impact

error

warning

“Bus signal
treated as vector”
(Simulink)

No impact

No impact

No impact

error

none

“Invalid function-
call connection”
(Simulink)

No impact

No impact

No impact

error

error

“Context-

dependent inputs”
(Simulink)

No impact

No impact

No impact

Enable all

Use local
settings

11-98

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Diagnostics Pane: Compatibility Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“S-function No impact |Noimpact [Noimpact |error none
upgrades needed”
(Simulink)
Mapping Application Requirements to the Diagnostics Pane: Model Referencing Tab
Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Model block No impact |[Noimpact [Noimpact |No none
version mismatch” recommendat
(Simulink) ion
“Port and No impact |Noimpact [Noimpact |error none
parameter
mismatch”
(Simulink)
“Invalid root No impact |Noimpact [Noimpact |error none
Inport/Outport
block connection”
(Simulink)
“Unsupported No impact |Noimpact [Noimpact |error warning
data logging”
(Simulink)

11-99

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Diagnostics Pane: Saving Tab

Configuration
Parameter

Settings for Building Code

Debugging

Traceability

Efficiency

Safety
precaution

Factory Default

“Block diagram
contains disabled
library links”
(Simulink)

No impact

No impact

No impact

No impact

warning

“Block diagram
contains
parameterized
library links”
(Simulink)

No impact

No impact

No impact

No impact

none

11-100

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Diagnostics Pane: Stateflow Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution

“Unused data, warning No impact |Noimpact |warning warning
events, messages, (for
and functions” simulation
(Simulink) and during

developme

nt)

none (for

production

code

generation

)
“Unexpected warning No impact |Noimpact |error warning
backtracking”
(Simulink)
“Invalid input warning No impact No impact |error warning
data access in
chart
initialization”
(Simulink)
“No unconditional warning No impact |No impact |error warning
default (for
transitions” simulation
(Simulink) and during

developme

nt)

none (for

production

code

generation

)

11-101

11 Configuration Parameters for Simulink Models

“Transition
outside natural
parent” (Simulink)

warning

No impact

No impact
(for
simulation
and during
developme
nt)

none (for
production
code
generation

)

error

warning

11-102

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Hardware Implementation Pane

Configuration Settings for Building Code Factory Default
Parameter

Debugging |Traceability |Efficiency |Safety
precaution

“Device vendor” No impact |[Noimpact |Noimpact |Select your None if specified
(Simulink) Device system target file is
vendor and |ert.tlc,

Device type |realtime.tlc, or

if they are autosar.tlc.
available in Otherwise,
the drop- Determine by

down list. If |code Generation

your Device |system target
vendor and |fiie

Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

11-103

11 Configuration Parameters for Simulink Models

“Device vendor”
(Simulink)

No impact

No impact

No impact

Select your
Device
vendor and
Device type
if they are
available in
the drop-
down list. If
your Device
vendor and
Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

Intel

11-104

Recommended Settings Summary for Model Configuration Parameters

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Device type” Noimpact |[Noimpact [Noimpact |Select your |x86-64
(Simulink) Device (Windows64)

vendor and
Device type
if they are
available in
the drop-
down list. If
your Device
vendor and
Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

11-105

11 Configuration Parameters for Simulink Models

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution
“Number of bits: [Noimpact [Noimpact |Target No char 8, short 16,
char” (Simulink) specific recommendat [int 32, long 32,
ion for long long 64,
simulation |f1oat 32, double
without code |64 native 32,
generation. pointer 32
For
simulation
with code
generation,
select your
Device

vendor and
Device type
if they are
available in
the drop-
down list. If
your Device
vendor and
Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

11-106

Recommended Settings Summary for Model Configuration Parameters

Configuration
Parameter

Settings for Building Code

Debugging

Traceability

Efficiency

Safety
precaution

Factory Default

“Largest atomic
size: integer”
(Simulink)

No impact

No impact

Target
specific

No
recommendat
ion for
simulation
without code
generation.
For
simulation
with code
generation,
select your
Device
vendor and
Device type
if they are
available in
the drop-
down list. If
your Device
vendor and
Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

integer Char,

floating-point Float

11-107

11 Configuration Parameters for Simulink Models

Configuration
Parameter

Settings for Building Code

Debugging

Traceability

Efficiency

Safety
precaution

Factory Default

“Byte ordering”
(Simulink)

No impact

No impact

No impact

No
recommendat
ion for
simulation
without code
generation.
For
simulation
with code
generation,
select your
Device
vendor and
Device type
if they are
available in
the drop-
down list. If
your Device
vendor and
Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

Little Endian

11-108

Recommended Settings Summary for Model Configuration Parameters

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution
“Signed integer No impact [Noimpact [Noimpact |No Zero
division rounds for for for recommendat
to” (Simulink) simulation |simulation [simulation |ion for
and during |and during |and during|simulation
development |development |developme |without code
nt generation.
Undefined |Zero or For
for Floor for zero for |gimulation
production |production |production |with code
code code code generation,
generation |generation |generation |select your
Device

vendor and
Device type
if they are
available in
the drop-
down list. If
your Device
vendor and
Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

11-109

11 Configuration Parameters for Simulink Models

Configuration
Parameter

Settings for Building Code

Debugging | Traceability

Efficiency

Safety
precaution

Factory Default

“Shift right on a

signed integer as
arithmetic shift”
(Simulink)

No impact |No impact

On

No
recommendat
ion for
simulation
without code
generation.
For
simulation
with code
generation,
select your
Device
vendor and
Device type
if they are
available in
the drop-
down list. If
your Device
vendor and
Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

11-110

Recommended Settings Summary for Model Configuration Parameters

Configuration
Parameter

Settings for Building Code

Debugging

Traceability

Efficiency

Safety
precaution

Factory Default

“Support long

long” (Simulink)

No impact

No impact

On
(execution,
ROM)

No
recommendat
ion for
simulation
without code
generation.
For
simulation
with code
generation,
select your
Device
vendor and
Device type
if they are
available in
the drop-
down list. If
your Device
vendor and
Device type
are not
available, set
device-
specific
values by
using Custom
Processor.

Off

11-111

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Model Referencing Pane

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution
“Rebuild” No impact |Noimpact [Noimpact |[If any If any changes
(Simulink) changes detected
detected or
Never
If you use the
Never
setting, then
set the Never
rebuild
diagnostic
parameter to
Error if
rebuild
required
“Never rebuild No impact |[Noimpact |Noimpact |error if error if rebuild
diagnostic” rebuild required
(Simulink) required
“Enable parallel Noimpact |Noimpact [Noimpact |No impact Off
model reference
builds” (Simulink)
“MATLAB worker |Noimpact |Noimpact |Noimpact |No impact None
initialization for
builds” (Simulink)
“Total number of |Noimpact |Noimpact |Noimpact [No Multiple
instances allowed recommendat
per top model” ion

(Simulink)

11-112

Recommended Settings Summary for Model Configuration Parameters

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety
precaution
“Pass fixed-size No impact |[Noimpact [No impact |No Off
scalar root inputs recommendat
by value for code ion
generation”
(Simulink)
“Minimize No impact |Noimpact |[No impact |No Off
algebraic loop recommendat
occurrences” ion
(Simulink)
“Propagate sizes |Noimpact |Noimpact |Noimpact [No Infer from
of variable-size recommendat |blocks in model
signals” ion
(Simulink)
“Model No impact |[Noimpact [Noimpact |No '
dependencies” recommendat
(Simulink) ion

11-113

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Simulation Target Pane: General Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Ensure memory |[On No impact [No On On
integrity” recommen
(Simulink) dation
“Echo expressions |On No impact Off No impact On
without
semicolons”
(Simulink)
“Ensure On No No No On
responsiveness” recommenda |[recommen |recommendat
(Simulink) tion dation ion
“Simulation target [No impact |[Noimpact |Noimpact |No impact Incremental
build mode” build
(Simulink)
Mapping Application Requirements to the Simulation Target Pane: Symbols Tab
Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Reserved names” |[Noimpact |[Noimpact |Noimpact |No {}
(Simulink) recommendat

ion

11-114

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Simulation Target Pane: Custom Code Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Parse custom On No impact |No impact [On On
code symbols”
(Simulink)
“Source file” No No No No v
(Simulink) recommenda [recommenda [recommen |recommendati

tion tion dation on
“Header file” No No No No v
(Simulink) recommenda |[recommenda [recommen |recommendati
tion tion dation on

“Initialize No No No No "
function” recommenda |recommenda |[recommen |recommendati
(Simulink) tion tion dation on
“Terminate No No No No v
function” recommenda [recommenda |[recommen |recommendati
(Simulink) tion tion dation on
“Include No impact |[Noimpact |No impact [No v
directories” recommendati
(Simulink) on
“Source files” No impact |Noimpact |Noimpact |No v
(Simulink) recommendati

on
“Libraries” No impact |Noimpact |Noimpact |No v
(Simulink) recommendati

on
“Defines” No impact |Noimpact |Noimpact |No v
(Simulink) recommendati

on

11-115

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Code Generation Pane: General Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging Traceability |Efficiency Safety

precaution
System target file [No impact No impact No impact No impact grt.tlc
on page 4-6 (GRT)

ERT based

(ERT)
“Language” on No impact No impact No impact No impact C
page 4-9
compexcep="155" |[Optimizatio |Optimizatio |Optimizatio [No impact Optimization
“Compiler ns off ns off ns on s off
optimization (faster (faster (faster (faster
level” on page 4- |builds) builds) runs) builds)
19 (execution)

No impact
(ROM, RAM)

“Custom Optimizatio |Optimizatio |Optimizatio |No impact Optimization
compiler ns off ns off ns on s off
optimization (faster (faster (faster (faster
flags” on page 4- |builds) builds) runs) builds)
21
“Generate No impact No impact No impact No impact On
makefile” on
page 4-23
“Make command” |No impact No impact No impact No make rtw
on page 4-25 recommendati

on
“Template No impact No impact No impact No impact grt default
makefile” on tmf
page 4-27

11-116

Recommended Settings Summary for Model Configuration Parameters

Configuration Settings for Building Code Factory Default
Parameter : o -

Debugging Traceability Efficiency Safety

precaution

“Select objective /|Debugging Not applicable |Execution No Unspecified
Prioritized for GRT-based |efficiency |recommendati
objectives” on targets on
page 4-29
“Check model On (proceed |On (proceed |[On (proceed [On (proceed |Off
before with with with with
generating code” |warnings) or |warnings) or |warnings) or |warnings) or
on page 4-37 On (stop On (stop On (stop On (stop

for for for for

warnings) warnings) warnings) warnings)
“Generate code |Off No impact No impact No impact Off
only” on page 4-
39
“Verbose build” |On No impact No impact No On
on page 10-55 recommendati

on

“Retain .rtw file” |On No impact No impact No impact Off
on page 10-57
“Profile TLC” on |On No impact No impact No impact Off
page 10-59
“Start TLC On No impact No impact No impact Off
debugger when
generating code”
on page 10-61
“Start TLC On No impact No impact No impact Off
coverage when
generating code”
on page 10-63
“Enable TLC On No impact No impact No Off
assertion” on recommendati
page 10-65 on

11-117

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Code Generation Pane: Report Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Create code On On No impact |No Off
generation report” recommendat
on page 5-5 ion
“Open report On On No impact |No impact Off
automatically” on
page 5-8

Mapping Application Requirements to the Code Generation Pane:

Comments Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Include On On No impact |No On
comments” on recommendati
page 6-5 on
“Simulink block On On No impact [No On
comments” on recommendati
page 6-7 on
“Stateflow object |[On On No impact |No Off
comments” on recommendati
page 6-9 on
“Show eliminated |[On On No impact |No On
blocks” on page 6- recommendati
13 on
“Verbose On On No impact |No On
comments for recommendati
SimulinkGlobal on
storage class” on
page 6-15
“Operator No impact |[On No impact [No On
annotations” on recommendati
page 6-17 on

11-118

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Code Generation Pane: Symbols Tab

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Maximum Valid value |>30 No impact |>30 31
identifier length”
on page 7-33
“Use the same No impact |Noimpact [No impact |No impact Off
reserved names as
Simulation
Target” on page 7-
55
“Reserved names” |Noimpact |Noimpact |Noimpact |[No impact {}

on page 7-57

11-119

11 Configuration Parameters for Simulink Models

Mapping Application Requirements to the Code Generation Pane: Custom Code Tab

Configuration
Parameter

Settings for Building Code

Debugging Traceability

Efficiency

Safety
precaution

Factory Default

“Use the same
custom code
settings as
Simulation
Target” on
page 8-5

No impact No impact

No impact

No impact

Off

“Source file”
on page 8-7

No impact No impact

No impact

No impact

“Header file”
on page 8-8

No impact No impact

No impact

No impact

“Initialize
function” on
page 8-10

No impact No impact

No impact

No impact

“Terminate
function” on
page 8-11

No impact No impact

No impact

No impact

“Include
directories”
on page 8-13

No impact No impact

No impact

No impact

“Source files”
on page 8-15

No impact No impact

No impact

No impact

“Libraries” on
page 8-17

No impact No impact

No impact

No impact

“Defines” on
page 8-19

No impact No impact

No impact

No impact

11-120

Recommended Settings Summary for Model Configuration Parameters

Mapping Application Requirements to the Code Generation Pane: Interface Tab

Configuration Settings for Building Code Factory Default
Parameter : e :
Debugging |Traceability |Efficiency |Safety
precaution
“Standard math No impact |Noimpact |Valid No impact C99 (ISO)
library” on page library
10-21
“Code No impact |[Noimpact |Valid No impact None
replacement library
library” on page 9-
11
“Shared code Shared Shared No impact |No impact Auto
placement” on location |[location |(execution,
page 9-15 (GRT) (GRT) RAM)
No impact [Noimpact |[Shared
(ERT) (ERT) location
(ROM)
“Support: non- No impact |Noimpact |Off Norecommend |On
finite numbers” (Execution |ation
on page 9-19 , ROM)
No impact
(RAM)
“Code interface No impact |Noimpact |Reusable |No impact Nonreusable
packaging” on function function if
page 9-30 or C++ Language is set to
class C; C++ class if
Language is set to
C++
“Multi-instance Warning or |Noimpact |None No impact Error

code error
diagnostic” on
page 9-34

Error

11-121

11 Configuration Parameters for Simulink Models

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“Classic call No impact | Off Off No Off (except On for
interface” on page (execution, [recommendati |GRT models created
10-30 ROM), No |on before R2012a)

impact
(RAM)
“Single output/ On On On No On
update function” recommendati
on page 10-36 on
“MAT-file logging” |On No impact |Off Off On (GRT)
on page 10-50
Off (ERT)

“MAT-file variable |[No impact |Noimpact [Noimpact |No impact rt
name modifier” on
page 10-53
“Generate C API |[Noimpact |Noimpact [Noimpact |No impact Off
for: signals” on (development)
page 9-48

Off

(production)
“Generate C API |[Noimpact |Noimpact [Noimpact |Noimpact Off
for: parameters” (development)
on page 9-50

Off

(production)
“Generate C API |[Noimpact |Noimpact [Noimpact |No impact Off
for: states” on (development)
page 9-52

Off

(production)
“Generate C API |Noimpact [Noimpact [Noimpact |No impact Off
for: root-level I/0” (development)
on page 9-54

Off

(production)

11-122

Recommended Settings Summary for Model Configuration Parameters

Configuration Settings for Building Code Factory Default
Parameter Debugging |Traceability |Efficiency |Safety

precaution
“ASAP2 interface” |[Noimpact |Noimpact [Noimpact |No impact Off
on page 9-56 (development)

Off

(production)
“External mode” |[Noimpact |Noimpact [Noimpact |No impact Off
on page 9-58 (development)

Off

(production)
“Transport layer” |Noimpact [Noimpact [No impact |No impact tcpip
on page 9-60
“MEX-file No impact |Noimpact [Noimpact |No impact "
arguments” on
page 9-62
“Static memory No impact |Noimpact |Noimpact |No impact Off
allocation” on
page 9-64
“Static memory No impact |Noimpact |Noimpact |Noimpact 1000000

buffer size” on
page 11-25

11-123

Model Advisor Checks

+ “Simulink Coder Checks” on page 12-2
* “Code Generation Advisor Checks” on page 12-26

1 2 Model Advisor Checks

Simulink Coder Checks

12-2

In this section...

“Simulink Coder Checks Overview” on page 12-2

“Identify blocks using one-based indexing” on page 12-2

“Check solver for code generation” on page 12-3

“Check for blocks not supported by code generation” on page 12-4

“Check and update model to use toolchain approach to build generated code” on page 12-
5

“Check and update embedded target model to use ert.tlc system target file” on page 12-
8

“Check and update models that are using targets that have changed significantly across
different releases of MATLAB” on page 12-9

“Check for blocks that have constraints on tunable parameters” on page 12-10
“Check for model reference configuration mismatch” on page 12-12

“Check sample times and tasking mode” on page 12-12

“Check for code generation identifier formats used for model reference” on page 12-13
“Available Checks for Code Generation Objectives” on page 12-14

“Identify questionable blocks within the specified system” on page 12-23

“Check model configuration settings against code generation objectives” on page 12-24

Simulink Coder Checks Overview
Use Simulink Coder Model Advisor checks to configure your model for code generation.

See Also

* “Run Model Checks” (Simulink)
+ “Simulink Checks” (Simulink)
+ “Embedded Coder Checks” (Embedded Coder)

Identify blocks using one-based indexing

Check ID: mathworks.codegen.cgsl 0101

Simulink Coder Checks

Identify blocks using one-based indexing.

Description

Zero-based indexing is more efficient in the generated code than one-based indexing.
Using zero-based indexing increases execution efficiency of the generated code.
Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action
The model or subsystem contains blocks Configure the blocks for zero-based
configured for one-based indexing. indexing. Update the supporting blocks.

Capabilities and Limitations
You can:

* Run this check on your library models.

* Exclude blocks and charts from this check if you have a Simulink Check license.
See Also

* “cgsl_0101: Zero-based indexing” (Simulink).

+ “What Is a Model Advisor Exclusion?” (Simulink Check)

Check solver for code generation

Check ID: mathworks.codegen.SolverCodeGen

Check model solver and sample time configuration settings.

Description

Incorrect configuration settings can stop the code generator from producing code.

Underspecifying sample times can lead to undesired results. Avoid generating code that
might corrupt data or produce unpredictable behavior.

Available with Simulink Coder.

12-3

1 2 Model Advisor Checks

12-4

Results and Recommended Actions

Condition Recommended Action
The solver type is set incorrectly for model |In the Configuration Parameters dialog
level code generation. box, on the Solver pane, set Type

(Simulink) to Fixed-step.

Multitasking diagnostic options are not set |In the Configuration Parameters dialog
to error. box, on the Diagnostics pane, set

+ Sample Time > Multitask
conditionally executed subsystem
(Simulink) to error

+ Sample Time > Multitask rate
transition (Simulink) to error

+ Data Validity > Multitask data store
(Simulink) to error

Tips

You do not have to modify the solver settings to generate code from a subsystem. The
build process automatically changes Solver type to fixed-step when you select Code
Generation > Build Subsystem or Code Generation > Generate S-Function from
the subsystem context menu.

See Also

* “Configure Time-Based Scheduling”

+ “Execute Multitasking Models”

Check for blocks not supported by code generation
Check ID: mathworks.codegen.codeGenSupport

Identify blocks not supported by code generation.

Description

This check partially identifies model constructs that are not suited for code generation as
identified in the Simulink Block Support tables for Simulink Coder and Embedded

Simulink Coder Checks

Coder. If you are using blocks with support notes for code generation, review the
information and follow the given advice.

Available with Simulink Coder.

Results and Recommended Actions
Condition Recommended Action

The model or subsystem contains blocks Consider replacing the blocks listed in the
that should not be used for code generation. |results. Click an element from the list of
questionable items to locate condition.

Capabilities and Limitations
You can:

Run this check on your library models.

Exclude blocks and charts from this check if you have a Simulink Check license.
See Also

“Blocks and Products Supported for C Code Generation”
“What Is a Model Advisor Exclusion?” (Simulink Check)

Check and update model to use toolchain approach to build generated
code

Check ID: mathworks.codegen.toolchainInfoUpgradeAdvisor.check
Check if model uses Toolchain settings to build generated code.
Description

Checks whether the model uses the template makefile approach or the toolchain
approach to build the generated code.

Available with Simulink Coder.

When you open a model created before R2013b that has System target file set to
ert.tlc,ert shrlib.tlc,or grt.tlc the software automatically tries to upgrade the
model from using the template makefile approach to using the toolchain approach.

12-5

1 2 Model Advisor Checks

If the software did not upgrade the model, this check determines the cause, and if
available, recommends actions you can perform to upgrade the model.

To determine which approach your model is using, you can also look at the Code
Generation pane in the Configuration Parameters dialog box. The toolchain approach
uses the following parameters to build generated code:

* “Toolchain” on page 4-12

* “Build configuration” on page 4-14

The template makefile approach uses the following settings to build generated code:

+ Compiler optimization level
* Custom compiler optimization flags
+ Generate makefile

* Template makefile

Results and Recommended Actions

Condition Recommended Action |Comment

Model is No action. The model was automatically upgraded.
configured to

use the

toolchain

approach.

Model is not Model cannot be The system target file is not toolchain-
configured to automatically upgraded |compliant. Set System target file to a
use the to use the toolchain toolchain-compliant target, such as ert.tlc,
toolchain approach. ert shrlib.tlc,orgrt.tlc.
approach. -

12-6

Simulink Coder Checks

Condition

Recommended Action

Comment

Model is not
configured to
use the
toolchain
approach.
(Parameter
values are not
the default
values.)

Model can be
automatically upgraded
to use the toolchain
approach. Click
Update Model.

The parameters are set to their default
values, except Compiler Optimization
Level, which is set Optimizations on
(faster runs). Clicking Update Model
sets Compiler Optimization Level to its
default value, Optimizations off
(faster builds), and then upgrades the
model. The upgraded model has Build
Configuration set to Faster Builds.
Saving the model makes these changes
permanent.

Model is not
configured to
use the
toolchain
approach.
(Parameter
values are not
the default
values.)

Model cannot be
automatically upgraded
to use the toolchain
approach.

One or more of the following parameters is
not set to its default value:

+ Generate makefile (default: Enabled)

Template makefile (default: Target-
specific default TMF)

+ Compiler optimization level (default:
Optimizations off (faster

builds))
* Make command (default: make rtw
without arguments)

See “Upgrade Model to Use Toolchain
Approach”

Action Results

Clicking Update model upgrades the model to use the toolchain approach to build

generated code.

See Also

+ “Upgrade Model to Use Toolchain Approach”

12-7

1 2 Model Advisor Checks

Check and update embedded target model to use ert.tlc system target
file

Check ID: mathworks.codegen.codertarget.check

Check and update the embedded target model to use ert.tle system target file.
Description

Check and update models whose System target file is set to idelink ert.tlcor
idelink grt.tlc and whose target hardware is one of the supported Texas
Instruments C2000™ processors to use ert.tlc and similar settings.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

System target file is set toert.tlc - No action
Embedded Coder.

System target file is set to idelink ert.tlc or |Update model
idelink grt.tlc and Board parameter is set to
a processor that is supported by the Embedded

Coder Support Package for Texas Instruments
C2000 Processors.

Action Results

Clicking Update model automatically sets the following parameters on the Code
Generation pane in the model Configuration Parameters dialog box:

+ System target file parameter to ert.tlc.

+ Target hardware parameter to match the previous board or processor.
* Toolchain parameter to match the previous toolchain.

* Build configuration parameter to match the build configuration.

This action also sets the parameters on the Coder Target pane to match the previous
parameter values under the Peripherals tab.

12-8

Simulink Coder Checks

Capabilities and Limitations

The new workflow uses the toolchain approach, which relies on enhanced makefiles to
build generated code. It does not provide an equivalent to setting the Build format
parameter to Project in the previous configuration. Therefore, the new workflow cannot
automatically generate IDE projects within the CCS 3.3 IDE.

See Also

“Toolchain Configuration”

Check and update models that are using targets that have changed
significantly across different releases of MATLAB

Check ID:

mathworks.codegen.realtime2CoderTargetInfoUpgradeAdvisor.check

Check and update models with Simulink targets that have changed significantly across
different releases of MATLAB.

Description

Save a model that you have updated to work with the current installation of MATLAB.
Available with Simulink Coder.

Results and Recommended Actions
Condition Recommended Action

Model uses a target that has changed significantly |Save model
since the release of MATLAB in which it was
originally saved.

Model does not use a Simulink target or is using No action
the latest version of the target.

Model is automatically updated. Save model

12-9

1 2 Model Advisor Checks

Condition Recommended Action

Invalid external mode configuration. In the Configuration
Parameters > Interface pane,
update the external mode
parameter settings to match
characteristics of your host-target
connection.

Model is corrupted. Close and reopen the model. If the
issue persists, reset
Configuration Parameters >
Hardware Implementation >
Hardware board.

Action Results

Clicking Save model updates the model to work with the current installation of
MATLAB and saves the model.

See Also

“Hardware Implementation Pane” (Simulink), “Configure Production and Test
Hardware”

Check for blocks that have constraints on tunable parameters
Check ID: mathworks.codegen.ConstraintsTunableParam

Identify blocks with constraints on tunable parameters.

Description

Lookup Table blocks have strict constraints when they are tunable. If you violate lookup
table block restrictions, the generated code produces incorrect answers.

Available with Simulink Coder.

12-10

Simulink Coder Checks

Results and Recommended Actions

Condition

Recommended Action

Lookup Table blocks have tunable
parameters.

When tuning parameters during
simulation or when running the generated
code, you must:

* Preserve monotonicity of the setting for
the Vector of input values parameter.

* Preserve the number and location of
zero values that you specify for Vector
of input values and Vector of output
values parameters if you specify
multiple zero values for the Vector of
input values parameter.

Lookup Table (2-D) blocks have tunable
parameters.

When tuning parameters during
simulation or when running the generated
code, you must:

* Preserve monotonicity of the setting for
the Row index input values and
Column index of input values
parameters.

* Preserve the number and location of
zero values that you specify for Row
index input values, Column index
of input values, and Vector of
output values parameters if you
specify multiple zero values for the Row
index input values or Column index
of input values parameters.

Lookup Table (n-D) blocks have tunable
parameters.

When tuning parameters during
simulation or when running the generated
code, you must preserve the increasing
monotonicity of the breakpoint values for
each table dimension Breakpoints n.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

12-11

1 2 Model Advisor Checks

12-12

See Also

* 1-D Lookup Table
* 2-D Lookup Table
+ “What Is a Model Advisor Exclusion?” (Simulink Check)

Check for model reference configuration mismatch

Check ID: mathworks.codegen.MdlrefConfigMismatch

Identify referenced model configuration parameter settings that do not match the top
model configuration parameter settings.

Description

The code generator cannot create code for top models that contain referenced models with
different, incompatible configuration parameter settings.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

The top model and the referenced model Modify the specified model configuration
have inconsistent model configuration settings.

parameter settings.

See Also

+ “Overview of Model Referencing” (Simulink)

+ “Set Configuration Parameters for Model Referencing” (Simulink)

Check sample times and tasking mode
Check ID: mathworks.codegen.SampleTimesTaskingMode

Set up the sample time and tasking mode for your system.

Simulink Coder Checks

Description

Incorrect tasking mode can result in inefficient code execution or incorrect generated
code.

Available with Simulink Coder.

Results and Recommended Actions
Condition Recommended Action

The model represents a multirate system |In the Configuration Parameters dialog
but is not configured for multitasking. box, on the Solver pane, set the “Treat
each discrete rate as a separate task”
(Simulink) parameter as recommended.

The model is configured for multitasking, |In the Configuration Parameters dialog

but multitasking is not desirable on the box, on the Solver pane, clear the checkbox
target hardware. for the “Treat each discrete rate as a
separate task” (Simulink) parameter, or
change the settings on the Hardware
Implementation (Simulink) pane.

See Also

“Time-Based Scheduling and Code Generation”

Check for code generation identifier formats used for model reference
Check ID: mathworks.codegen.ModelRefRTWConfigCompliance

Checks for referenced models in a model referencing hierarchy for which code generation
changes configuration parameter settings that involve identifier formats.

Description

In referenced models, if the following Configuration Parameters > Code Generation
> Symbols parameters have settings that do not contain a SR token (which represents
the name of the reference model), code generation prepends the $R token to the identifier
format.

+ Global variables

12-13

1 2 Model Advisor Checks

Global types

Subsystem methods

Constant macros

Available with Simulink Coder.

Results and Recommended Actions

Condition

Recommended Action

A script that operates on generated code uses
model names that code generation changes.

Update the script to use the
generated name (which includes an
appended SR token).

Available Checks for Code Generation Objectives

Code generation objectives checks facilitate designing and troubleshooting Simulink
models and subsystems that you want to use to generate code.

The Code Generation Advisor includes the following checks from Simulink, Simulink
Coder, and Embedded Coder for each of the code generation objectives. Two checks

unique to the Code Generation Advisor are included below the list.

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check Included Included [Included [Include |[Included |Included |Included |Included
model d (see Note
configurat below)
ion
settings
against
code
generation
objectives”
on page
12-24

12-14

Simulink Coder Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check for [Included Included |Included |N/A N/A N/A N/A N/A
optimal
bus
virtuality”
(Simulink)
“Identify |Included Included |Included |N/A N/A N/A N/A N/A
questiona
ble blocks
within the
specified
system” on
page 12-
23
“Check Included if |Included |N/A N/A N/A N/A N/A N/A
the Embedded |if
hardware |Coder is Embedde
implement |available d Coder
ation” 1s
(Embedde available
d Coder)
“Identify |Included Included [N/A N/A N/A N/A N/A N/A
questiona |when when
ble Traceabilit |Traceabil
software |yisnota |ityis not
environme |higher a higher
nt priority and |priority
specificati |[Embedded |and
ons” Coder is Embedde
(Embedde |available |d Coder
d Coder) is
available

12-15

1 2 Model Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Identify |Included Included |Included |N/A N/A N/A N/A N/A
questiona |when when when
ble code |Traceabilit |Traceabil |Traceabili
instrumen |y or ity or ty or
tation Debugging |Debuggi |Debuggin
(data I/0)” |are not ng are g are not
(Embedde |higher not higher
d Coder) |priorities |higher priorities
and priorities [and
Embedded |and Embedded
Coder is Embedde | Coder is
available |d Coder |available
is
available
“Identify |N/A Included |Included |N/A N/A N/A N/A N/A
questiona if if
ble Embedde | Embedded
subsystem d Coder |Coder is
settings” is available
(Embedde available
d Coder)
“Identify |Included if |[Included |N/A N/A N/A N/A N/A N/A
blocks Embedded |if
that Coder is Embedde
generate |available d Coder
expensive 1s
rounding available
code”
(Embedde
d Coder)

12-16

Simulink Coder Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Identify [Included if |Included |N/A N/A N/A N/A N/A N/A
questiona |Embedded |if
ble fixed- |Coder or Embedde
point Fixed-Point |d Coder
operations |Designer™ |or Fixed-
7 is available |Point
(Embedde Designer
d Coder) is
available
“Identify |Included Included |N/A N/A N/A N/A N/A N/A
blocks
using one-
based
indexing”
on page
12-2
“Identify |Included if |[Included |N/A N/A N/A N/A N/A N/A
lookup Embedded |if
table Coder is Embedde
blocks available d Coder
that 1s
generate available
expensive
out-of-
range
checking
code”
(Embedde
d Coder)

12-17

1 2 Model Advisor Checks

Check

Execution
efficiency
(all targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precauti
on
(ERT-
based
targets)

Traceabil
ity

(ERT-
based
targets)

Debuggi
ng

(all
targets)

MISRA C:
2012
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

“Check
output
types of
logic
blocks”
(Embedde
d Coder)

Included if
Embedded
Coder is
available

N/A

N/A

N/A

N/A

N/A

N/A

N/A

“Identify
unconnect
ed lines,
input
ports, and
output
ports”
(Simulink)

N/A

N/A

N/A

Include

d

N/A

N/A

N/A

N/A

“Check
Data Store
Memory
blocks for
multitaski
ng, strong
typing,
and
shadowing
issues”

(Simulink)

N/A

N/A

N/A

Include

d

N/A

N/A

N/A

N/A

12-18

Simulink Coder Checks

Check

Execution
efficiency
(all targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precauti
on
(ERT-
based
targets)

Traceabil
ity

(ERT-
based
targets)

Debuggi
ng

(all
targets)

MISRA C:
2012
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

“Identify
block
output
signals
with
continuou
s sample
time and
non-
floating
point data
type”
(Simulink)

N/A

N/A

N/A

Include
d

N/A

N/A

N/A

N/A

“Check for
blocks
that have
constraint
son
tunable
parameter
s” on page
12-10

N/A

N/A

N/A

Include

d

N/A

N/A

N/A

N/A

“Check if
read/write
diagnostic
s are
enabled
for data
store
blocks”
(Simulink)

N/A

N/A

N/A

Include

N/A

N/A

N/A

N/A

12-19

1 2 Model Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based

based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)

“Check N/A N/A N/A Include |N/A N/A N/A N/A

structure d

parameter

usage

with bus

signals”

(Simulink)

“Check N/A N/A N/A Include |N/A N/A N/A N/A

data store d

block

sample

times for

modeling

errors”

(Simulink)

“Check for |[N/A N/A N/A Include |N/A N/A N/A N/A

potential d

ordering

issues

involving

data store

access”

(Simulink)

12-20

Simulink Coder Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check for [N/A N/A N/A N/A N/A N/A Included |N/A
blocks not if
recommen Embedde
ded for d Coder is
C/C++ available
production
code
deploymen
e
(Embedde
d Coder)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
blocks not if
recommen Embedde
ded for d Coder is
MISRA C: available
2012”
(Embedde
d Coder)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
unsupport if
ed block Embedde
names” d Coder is
(Embedde available
d Coder)
“Check N/A N/A N/A N/A N/A N/A Included |N/A
usage of if
Assignme Embedde
nt blocks” d Coder is
(Embedde available
d Coder)

12-21

1 2 Model Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check for [N/A N/A N/A N/A N/A N/A Included |N/A
bitwise if
operations Embedde
on signed d Coder is
integers” available
(Embedde
d Coder)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
recursive if
function Embedde
calls” d Coder is
(Embedde available
d Coder)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
equality if
and Embedde
inequality d Coder is
operations available
on
floating-
point
values”
(Embedde
d Coder)

12-22

Simulink Coder Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
switch if
case Embedde
expression d Coder is
s without available
a default
case”
(Embedde
d Coder)

Note When the Code Generation Advisor checks your model against the MISRA C:2012
guidelines objective, the tool does not consider all of the configuration parameter settings
that are checked by the MISRA C:2012 guidelines checks in the Model Advisor. For a
complete check of configuration parameter settings, run the checks under the By Task >
Modeling Guidelines for MISRA C:2012 node in the Model Advisor.

See Also

“Application Objectives Using Code Generation Advisor”

“Configure Model for Code Generation Objectives by Using Code Generation Advisor”
(Embedded Coder)

“Run Model Checks” (Simulink)

“Simulink Checks” (Simulink)
“Simulink Coder Checks” on page 12-2
“Simulink Check Checks” (Simulink Check)

Identify questionable blocks within the specified system

Identify blocks not supported by code generation or not recommended for deployment.

12-23

1 2 Model Advisor Checks

12-24

Description

The code generator creates code only for the blocks that it supports. Some blocks are not
recommended for production code deployment.

Results and Recommended Actions

Condition Recommended Action

A block is not supported by the code Remove the specified block from the model

generator. or replace the block with the recommended
block.

A block i1s not recommended for production |Remove the specified block from the model

code deployment. or replace the block with the recommended
block.

Check for Gain blocks whose value equals |Replace Gain blocks with Signal

1. Conversion blocks.

Capabilities and Limitations
You can:

* Run this check on your library models.

+ Exclude blocks and charts from this check if you have a Simulink Check license.
See Also
“Blocks and Products Supported for C Code Generation”

“What Is a Model Advisor Exclusion?” (Simulink Check)

Check model configuration settings against code generation objectives

Check the configuration parameter settings for the model against the code generation
objectives.

Description

Each parameter in the Configuration Parameters dialog box might have different
recommended settings for code generation based on your objectives. This check helps you
identify the recommended setting for each parameter so that you can achieve optimized
code based on your objective.

Simulink Coder Checks

Results and Recommended Actions

Condition

Recommended Action

value recommended for the specified
objectives.

Parameters are set to values other than the |Set the parameters to the recommended

values.

Note A change to one parameter value can
impact other parameters. Passing the
check might take multiple iterations.

Action Results

Clicking Modify Parameters changes the parameter values to the recommended

values.

See Also

Coder)

(Embedded Coder)

“Recommended Settings Summary for Model Configuration Parameters” (Embedded

“Application Objectives Using Code Generation Advisor”
“Configure Model for Code Generation Objectives by Using Code Generation Advisor”

12-25

1 2 Model Advisor Checks

Code Generation Advisor Checks

In this section...

“Available Checks for Code Generation Objectives” on page 12-26

“Identify questionable blocks within the specified system” on page 12-35

“Check model configuration settings against code generation objectives” on page 12-36

Available Checks for Code Generation Objectives

Code generation objectives checks facilitate designing and troubleshooting Simulink
models and subsystems that you want to use to generate code.

The Code Generation Advisor includes the following checks from Simulink, Simulink
Coder, and Embedded Coder for each of the code generation objectives. Two checks

unique to the Code Generation Advisor are included below the list.

Check Execution |ROM RAM Safety |Traceabil |[Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check Included Included [Included [Include |[Included |Included |Included |Included
model d (see Note
configurat below)
ion
settings
against
code
generation
objectives”
on page
12-36

12-26

Code Generation Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check for [Included Included |Included |N/A N/A N/A N/A N/A
optimal
bus
virtuality”
(Simulink)
“Identify |Included Included |Included |N/A N/A N/A N/A N/A
questiona
ble blocks
within the
specified
system” on
page 12-
35
“Check Included if |Included |N/A N/A N/A N/A N/A N/A
the Embedded |if
hardware |Coder is Embedde
implement |available d Coder
ation” 1s
(Embedde available
d Coder)
“Identify |Included Included [N/A N/A N/A N/A N/A N/A
questiona |when when
ble Traceabilit |Traceabil
software |yisnota |ityis not
environme |higher a higher
nt priority and |priority
specificati |[Embedded |and
ons” Coder is Embedde
(Embedde |available |d Coder
d Coder) is
available

12-27

1 2 Model Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Identify |Included Included |Included |N/A N/A N/A N/A N/A
questiona |when when when
ble code |Traceabilit |Traceabil |Traceabili
instrumen |y or ity or ty or
tation Debugging |Debuggi |Debuggin
(data I/0)” |are not ng are g are not
(Embedde |higher not higher
d Coder) |priorities |higher priorities
and priorities [and
Embedded |and Embedded
Coder is Embedde | Coder is
available |d Coder |available
is
available
“Identify |N/A Included |Included |N/A N/A N/A N/A N/A
questiona if if
ble Embedde | Embedded
subsystem d Coder |Coder is
settings” is available
(Embedde available
d Coder)
“Identify |Included if |[Included |N/A N/A N/A N/A N/A N/A
blocks Embedded |if
that Coder is Embedde
generate |available d Coder
expensive 1s
rounding available
code”
(Embedde
d Coder)

12-28

Code Generation Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Identify [Included if |Included |N/A N/A N/A N/A N/A N/A
questiona |Embedded |if
ble fixed- |Coder or Embedde
point Fixed-Point |d Coder
operations | Designer is |or Fixed-
7 available |Point
(Embedde Designer
d Coder) is
available
“Identify |Included Included |N/A N/A N/A N/A N/A N/A
blocks
using one-
based
indexing”
on page
12-2
“Identify |Included if |[Included |N/A N/A N/A N/A N/A N/A
lookup Embedded |if
table Coder is Embedde
blocks available d Coder
that 1s
generate available
expensive
out-of-
range
checking
code”
(Embedde
d Coder)

12-29

1 2 Model Advisor Checks

Check

Execution
efficiency
(all targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precauti
on
(ERT-
based
targets)

Traceabil
ity

(ERT-
based
targets)

Debuggi
ng

(all
targets)

MISRA C:
2012
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

“Check
output
types of
logic
blocks”
(Embedde
d Coder)

Included if
Embedded
Coder is
available

N/A

N/A

N/A

N/A

N/A

N/A

N/A

“Identify
unconnect
ed lines,
input
ports, and
output
ports”
(Simulink)

N/A

N/A

N/A

Include

d

N/A

N/A

N/A

N/A

“Check
Data Store
Memory
blocks for
multitaski
ng, strong
typing,
and
shadowing
issues”

(Simulink)

N/A

N/A

N/A

Include

d

N/A

N/A

N/A

N/A

12-30

Code Generation Advisor Checks

Check

Execution
efficiency
(all targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precauti
on
(ERT-
based
targets)

Traceabil
ity

(ERT-
based
targets)

Debuggi
ng

(all
targets)

MISRA C:
2012
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

“Identify
block
output
signals
with
continuou
s sample
time and
non-
floating
point data
type”
(Simulink)

N/A

N/A

N/A

Include
d

N/A

N/A

N/A

N/A

“Check for
blocks
that have
constraint
son
tunable
parameter
s” on page
12-10

N/A

N/A

N/A

Include

d

N/A

N/A

N/A

N/A

“Check if
read/write
diagnostic
s are
enabled
for data
store
blocks”
(Simulink)

N/A

N/A

N/A

Include

N/A

N/A

N/A

N/A

12-31

1 2 Model Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based

based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)

“Check N/A N/A N/A Include |N/A N/A N/A N/A

structure d

parameter

usage

with bus

signals”

(Simulink)

“Check N/A N/A N/A Include |N/A N/A N/A N/A

data store d

block

sample

times for

modeling

errors”

(Simulink)

“Check for |[N/A N/A N/A Include |N/A N/A N/A N/A

potential d

ordering

issues

involving

data store

access”

(Simulink)

12-32

Code Generation Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check for [N/A N/A N/A N/A N/A N/A Included |N/A
blocks not if
recommen Embedde
ded for d Coder is
C/C++ available
production
code
deploymen
e
(Embedde
d Coder)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
blocks not if
recommen Embedde
ded for d Coder is
MISRA C: available
2012”
(Embedde
d Coder)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
unsupport if
ed block Embedde
names” d Coder is
(Embedde available
d Coder)
“Check N/A N/A N/A N/A N/A N/A Included |N/A
usage of if
Assignme Embedde
nt blocks” d Coder is
(Embedde available
d Coder)

12-33

1 2 Model Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check for [N/A N/A N/A N/A N/A N/A Included |N/A
bitwise if
operations Embedde
on signed d Coder is
integers” available
(Embedde
d Coder)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
recursive if
function Embedde
calls” d Coder is
(Embedde available
d Coder)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
equality if
and Embedde
inequality d Coder is
operations available
on
floating-
point
values”
(Embedde
d Coder)

12-34

Code Generation Advisor Checks

Check Execution |ROM RAM Safety |Traceabil [Debuggi |MISRA C: |Polyspace
efficiency |efficiency |efficiency |precauti |ity ng 2012 (ERT-
(all targets) |(ERT- (ERT- on (ERT- (all guidelines |based
based based (ERT- |based targets) |[(ERT- targets)
targets) |[targets) based |[targets) based
targets) targets)
“Check for |[N/A N/A N/A N/A N/A N/A Included |N/A
switch if
case Embedde
expression d Coder is
s without available
a default
case”
(Embedde
d Coder)

Note When the Code Generation Advisor checks your model against the MISRA C:2012
guidelines objective, the tool does not consider all of the configuration parameter settings
that are checked by the MISRA C:2012 guidelines checks in the Model Advisor. For a
complete check of configuration parameter settings, run the checks under the By Task >
Modeling Guidelines for MISRA C:2012 node in the Model Advisor.

See Also

“Application Objectives Using Code Generation Advisor”

“Configure Model for Code Generation Objectives by Using Code Generation Advisor”
(Embedded Coder)

“Run Model Checks” (Simulink)

“Simulink Checks” (Simulink)
“Simulink Coder Checks” on page 12-2
“Simulink Check Checks” (Simulink Check)

Identify questionable blocks within the specified system

Identify blocks not supported by code generation or not recommended for deployment.

12-35

1 2 Model Advisor Checks

12-36

Description

The code generator creates code only for the blocks that it supports. Some blocks are not
recommended for production code deployment.

Results and Recommended Actions

Condition Recommended Action

A block is not supported by the code Remove the specified block from the model

generator. or replace the block with the recommended
block.

A block i1s not recommended for production |Remove the specified block from the model

code deployment. or replace the block with the recommended
block.

Check for Gain blocks whose value equals |Replace Gain blocks with Signal

1. Conversion blocks.

Capabilities and Limitations
You can:

* Run this check on your library models.

+ Exclude blocks and charts from this check if you have a Simulink Check license.
See Also
“Blocks and Products Supported for C Code Generation”

“What Is a Model Advisor Exclusion?” (Simulink Check)

Check model configuration settings against code generation objectives

Check the configuration parameter settings for the model against the code generation
objectives.

Description

Each parameter in the Configuration Parameters dialog box might have different
recommended settings for code generation based on your objectives. This check helps you
identify the recommended setting for each parameter so that you can achieve optimized
code based on your objective.

Code Generation Advisor Checks

Results and Recommended Actions

Condition

Recommended Action

value recommended for the specified
objectives.

Parameters are set to values other than the |Set the parameters to the recommended

values.

Note A change to one parameter value can
impact other parameters. Passing the
check might take multiple iterations.

Action Results

Clicking Modify Parameters changes the parameter values to the recommended

values.

See Also

Coder)

(Embedded Coder)

“Recommended Settings Summary for Model Configuration Parameters” (Embedded

“Application Objectives Using Code Generation Advisor”
“Configure Model for Code Generation Objectives by Using Code Generation Advisor”

12-37

Parameters for Creating Protected
Models

1 3 Parameters for Creating Protected Models

Create Protected Model

"4 Create Protected Model: rtwdemo_sil_counter @
Description

Create a protected model(.slxp) that allows read-only view, simulation, and code
generation of the model with optional password protection.

Allow user of protected model to
["] Open read-only view of model

3\

Simulate Enter password (optional) = Enter password (optional)
[C] Use generated code
Code interface: Top model

Content type: Binaries

Create protected model in: S:\ Browse...

[T Create harness model for protected model

® | Create H Cancel H Help]

In this section...

“Create Protected Model: Overview” on page 13-2
“Open read-only view of model” on page 13-3
“Simulate” on page 13-3

“Use generated code” on page 13-4

“Code interface” on page 13-5

“Content type” on page 13-6

“Create protected model in” on page 13-7

“Create harness model for protected model” on page 13-7

Create Protected Model: Overview

Create a protected model (.slxp) that allows read-only view, simulation, and code
generation of the model with optional password protection.

13-2

Create Protected Model

To open the Create Protected Model dialog box, right-click the model block that
references the model for which you want to generate protected model code. From the
context menu, select Subsystem & Model Reference > Create Protected Model for
Selected Model Block.

See Also

* “Protected Model” (Simulink)
* “Create a Protected Model”

Open read-only view of model

Share a view-only version of your protected model with optional password protection.
View-only version includes the contents and block parameters of the model.

Settings
Default: Off

Y1 On

Share a Web view of the protected model. For password protection, create and verify
a password with a minimum of four characters.

Off

Do not share a Web view of the protected model.
Alternatives
Simulink.ModelReference.protect
See Also

* “Create a Protected Model”
+ “Protect a Referenced Model”

Simulate

Allow user to simulate a protected model with optional password protection. Selecting
Simulate:

13-3

13 Parameters for Creating Protected Models

+ Enables protected model Simulation Report.
+ Sets Mode to Accelerator. You can run Normal Mode and Accelerator simulations.
* Displays only binaries and headers.

+ Enables code obfuscation.
Settings
Default: On

41 On

User can simulate the protected model. For password protection, create and verify a
password with a minimum of four characters.

Off

User cannot simulate the protected model.
Alternatives
Simulink.ModelReference.protect
See Also

+ “Create a Protected Model”
+ “Protect a Referenced Model”

Use generated code

Allows user to generate code for the protected model with optional password protection.
Selecting Use generated code:

* Enables Simulation Report and Code Generation Report for the protected model.
* Enables code generation.

+ Enables support for simulation.
Settings

Default: Off

13-4

Create Protected Model

Y1 On

User can generate code for the protected model. For password protection, create and
verify a password with a minimum of four characters.

Off

User cannot generate code for the protected model.

Dependencies

+ To generate code, you must also select the Simulate check box.

+ This parameter enables Code interface and Content type.
Alternatives
Simulink.ModelReference.protect

See Also

+ “Code Generation Support in a Protected Model”
+ “Protect a Referenced Model”

Code interface

Specify the interface for the generated code.
Settings

Default: Model reference

Model reference

Specifies the model reference interface, which allows use of the protected model
within a model reference hierarchy. Users of the protected model can generate code
from a parent model that contains the protected model. In addition, users can run
Model block software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations to
verify code.

Top model

Specifies the standalone interface. Users of the protected model can run Model block
SIL or PIL simulations to verify the protected model code.

13-5

1 3 Parameters for Creating Protected Models

Dependencies

* Requires an Embedded Coder license

+ This parameter is enabled if you:

Specify an ERT (ert.tlc) system target file.
Select the Use generated code check box.

Alternatives
Simulink.ModelReference.protect

See Also

* “Code Generation Support in a Protected Model”
+ “Protect a Referenced Model”

+ “Code Interfaces for SIL and PIL” (Embedded Coder)

Content type

Select the appearance of the generated code.
Settings

Default: Obfuscated source code

Binaries

Includes only binaries for the generated code.

Obfuscated source code

Includes obfuscated headers and binaries for the generated code.

Readable source code

Includes readable source code.
Dependencies

This parameter is enabled by selecting the Use generated code check box.

13-6

Create Protected Model

Alternatives
Simulink.ModelReference.protect
See Also

“Code Generation Support in a Protected Model”
“Protect a Referenced Model”

Create protected model in
Specify the folder path for the protected model.
Settings
Default: Current working folder
Dependencies
A model that you protect must be available on the MATLAB path.
Alternatives
Simulink.ModelReference.protect
See Also
“Protect a Referenced Model”
“Create a Protected Model”
Create harness model for protected model

Create a harness model for the protected model. The harness model contains only a
Model block that references the protected model.

Settings
Default: Off

Y On

Create a harness model for the protected model.

13-7

13 Parameters for Creating Protected Models

13-8

1 off
Do not create a harness model for the protected model.
Alternatives
Simulink.ModelReference.protect

See Also

+ “Harness Model”

+ “Test the Protected Model”

Tools — Alphabetical List

14 Tools — Alphabetical List

Code Replacement Viewer

Explore content of code replacement libraries

Description

The Code Replacement Viewer displays the content of code replacement libraries. Use
the tool to explore and choose a library. If you develop a custom code replacement library,
use the tool to verify table entries.

* Argument order is correct.

* Conceptual argument names match code generator naming conventions.

* Implementation argument names are correct.

* Header or source file specification is not missing.

+ T/O types are correct.

+ Relative priority of entries is correct (highest priority is 0, and lowest priority is 100).

* Saturation or rounding mode specifications are not missing.

If you specify a library name when you open the viewer, the viewer displays the code
replacement tables that the library contains. When you select a code replacement table,
the viewer displays function and operator code replacement entries that are in that table.

Abbreviated Entry Information

In the middle pane, the viewer displays entries that are in the selected code replacement
table, along with abbreviated information for each entry.

Field Description

Name Name or identifier of the function or operator being replaced
(for example, cos or RTW_OP_ADD).

Implementation Name of the implementation function, which can match or
differ from Name.

Numln Number of input arguments.

In1Type Data type of the first conceptual input argument.

14-2

Code Replacement Viewer

Field Description

In2Type Data type of the second conceptual input argument.
OutType Data type of the conceptual output argument.

Priority The entry's match priority, relative to other entries of the

same name and to the conceptual argument list within the
selected code replacement library. The priority can range from
0 to 100, with 0 being the highest priority. The default is 100.
If the library provides two implementations for a function or
operator, the implementation with the higher priority
shadows the one with the lower priority.

UsageCount Not used.

Detailed Entry Information

In the middle pane, when you select an entry, the viewer displays entry details.

Field Description
Description Text description of the table entry (can be empty).
Key Name or identifier of the function or operator being replaced (for

example, cos or RTW_OP_ADD), and the number of conceptual
Input arguments.

Implementation Name of the implementation function, and the number of
implementation input arguments.

Implementation Type of implementation: FCN_IMPL FUNCT for function or
type FCN_IMPL MACRO for macro.

Saturation mode |Saturation mode that the implementation function supports. One
of:

RTW_ SATURATE ON OVERFLOW

RTW_WRAP ON_OVERFLOW

RTW_SATURATE UNSPECIFIED

14-3

14 Tools — Alphabetical List

Field

Description

Rounding modes

Rounding modes that the implementation function supports. One
or more of:

RTW ROUND FLOOR

RTW ROUND CEILING

RTW_ROUND_ZERO

RTW _ROUND NEAREST

RTW_ROUND NEAREST ML

RTW ROUND SIMPLEST

RTW_ROUND_CONV

RTW ROUND UNSPECIFIED

GenCallback file |Not used.

Implementation Name of the header file that declares the implementation function.
header

Implementation Name of the implementation source file.

source

Priority The entry's match priority, relative to other entries of the same

name and to the conceptual argument list within the selected code
replacement library. The priority can range from 0 to 100, with 0
being the highest priority. The default is 100. If the library
provides two implementations for a function or operator, the
implementation with the higher priority shadows the one with the
lower priority.

Total Usage Count

Not used.

Entry class

Class from which the current table entry is instantiated.

Conceptual Name, I/O type (RTW_IO OUTPUT or RTW IO INPUT), and data
arguments type for each conceptual argument.
Implementation Name, I/O type (RTW IO OUTPUT or RTW IO INPUT), data type,

and alignment requirement for each implementation argument.

Fixed-Point Entry Information

When you select an operator entry that specifies net slope fixed-point parameters, the
viewer displays fixed-point information.

Code Replacement Viewer

Field

Description

Net slope
adjustment factor
F

Slope adjustment factor (F) part of the net slope factor, F2F, for
net slope table entries. You use this factor with fixed-point
multiplication and division replacement to map a range of slope
and bias values to a replacement function.

Net fixed exponent
E

Fixed exponent (E) part of the net slope factor, F2E, for net slope
table entries. You use this fixed exponent with fixed-point
multiplication and division replacement to map a range of slope
and bias values to a replacement function.

Slopes must be the
same

Indicates whether code replacement request processing must
check that the slopes on arguments (input and output) are equal.
You use this information with fixed-point addition and
subtraction replacement to disregard specific slope and bias
values, and map relative slope and bias values to a replacement
function.

Must have zero net
bias

Indicates whether code replacement request processing must
check that the net bias on arguments is zero. You use this
information with fixed-point addition and subtraction
replacement to disregard specific slope and bias values, and map
relative slope and bias values to a replacement function.

Open the Code Replacement Viewer

Open from the MATLAB command prompt using crviewer.

Examples

Display Contents of Code Replacement Library

crviewer ('"ARM Cortex-A'")

14-5

14 Tools — Alphabetical List

m Code Replacement Viewer - |EI |i|

Code Replacement Library |

P) | Name £ | ARM Cortex-A
. |§§) crl_table_nel0 @) crl_table_ne10 Summary
- |§) dst_crl_table_nel10 [§) dst_crl_table_ne1n Name: ARM Cortex-A
+[@ dst_sysobj_crl_table_ne10) dst_sysobj_crl_table_ne10 Description: NE10 Optimization Library
8 GCC_ARM_NEON_mw_lib @) GCC_ARM_NEON_mvi_lib Base Library: GCC_ARM_NEON_mw_lib
Total Number of tables: 4

Expand the library on the left pane (tree view) to
see all tables in this code replacement library,
including those inherited from its base libraries.
Tables in this library, listed in prioritized order from
high to low, are:

crl_table_nel0

dst_crl_table_nel10

dst_sysobj_crl_table_nel0
GCC_ARM_MEON_mw_lib

Help | Close |

Display Contents of Code Replacement Table

crviewer (clr table nel0)

14-6

Code Replacement Viewer

H Code Replacement Viewer - |EI |i|

Code Replacement Table |

: | Mame & | Implen Table
o @ Table -:E;] abs nell_a Summary
4 RTW_OP_ADD 1e10_a Description:
=) RTw_oP_ADD 1e10.5 | Name: Table
48] RTw_oP_ADD 1e10 2 | Version: 1.0
-:E;] RTW_OP_ELEM_MUL nel0_n Mumber of entries: 8
) RTW_OP_MINUS ne10_s
-_E;I RTW_OP_MINUS neld_ Select entries in middle pane (list view) to see

: :__E;] RTW_OP_MINUS 1e10 ol entry details in the right pane.

SaveAs Help Close

< | 2

. “Choose a Code Replacement Library”

Programmatic Use

crviewer (library) opens the Code Replacement Viewer and displays the contents of
library, where library is a character vector that names a registered code replacement
library. For example, 'GNU 99 extensions'.

crviewer (table) opens the Code Replacement Viewer and displays the contents of
table, where table is a MATLAB file that defines code replacement tables. The file
must be in the current folder or on the MATLAB path.

14-7

14 Tools — Alphabetical List

See Also

Topics

“Choose a Code Replacement Library’
“What Is Code Replacement?”

“Code Replacement Libraries”

“Code Replacement Terminology”

i

Introduced in R2014b

14-8

